

Shed - 001 Styx River Reserve #2 PRK 2546 BLDG 001

Detailed Engineering Evaluation

Qualitative Report
FINAL Version

Shed – 001 Styx River Reserve #2 PRK 2546 BLDG 001

Detailed Engineering Evaluation

Qualitative Report

FINAL Version

Styx River Reserve, 303 Radcliffe Road, Belfast, Christchurch

Christchurch City Council

Prepared By Nate Oakes

Reviewed By Peter O'Brien

Date 24/05/2013

Contents

Qua	alitative Report Summa	ary	i
1.	Background		1
2.	Compliance		2
	2.0 Canterbury Eartho2.1 Building Act2.2 Christchurch City2.3 Building Code	quake Recovery Authority (CERA) Council Policy	2 3 4 4
3.	Earthquake Resistar	nce Standards	5
4.	Building Description		7
	4.0 General4.1 Gravity Load Resi4.2 Lateral Load Resi		7 8 8
5.	Assessment		9
6.	Damage Assessmer	nt	10
	6.0 Surrounding Build6.1 Residual Displace6.2 Ground Damage	ings ements and General Observations	10 10 10
7.	Critical Structural W	eakness	11
	 7.1 Short Columns 7.2 Lift Shaft 7.3 Roof 7.4 Staircases 7.5 Plan Irregularity 7.6 Liquefaction and L 	∟ateral Spreading	11 11 11 11 11
8.	Geotechnical Consid	deration	12
	8.2 Seismicity	ation on Ground Conditions /or Rockfall Potential	12 12 14 14
	o.o olobe Fallule and	OI NOCKIAII FOLEITIAI	14

	8.4	Liquefac	ction Potential	15
	8.5	Conclus	ions & Summary	15
9.	Surv	ey ey		16
10.	Initia	l Capac	city Assessment	17
	10.1	% NBS	Assessment	17
	10.2	Seismic	Parameters	17
	10.3	Expecte	d Structural Ductility Factor	17
	10.4	Discussi	ion of Results	18
	10.5	Occupa	ncy	18
11.	Initia	ıl Conclu	usions	19
12.	Reco	ommend	dations	20
13.	Limit	tations		21
	13.1	General		21
	13.2	Geotech	nnical Limitations	21
Tab	ole Ind	dex		
	Table	e 1	%NBS compared to relative risk of failure	6
	Table	e 2	ECan Borehole Summary	12
	Table	e 3	Summary of Known Active Faults	14
	Table	e 4	Indicative Capacities based on the NZSEE Initial Evaluation Procedure	17
Figu	ure Ir	ndex		
	Figur	e 1	NZSEE Risk Classifications Extracted from table 2.2 of the NZSEE 2006 AISPBE	5
	Figur	e 2	Plan Sketch Showing Key Structural Elements	7
	Figur	e 3	Post February 2011 Earthquake Aerial Photography	13

Appendices

- A Photographs
- B Existing Drawings
- C CERA Building Evaluation Form

Qualitative Report Summary

Shed - 001 - Styx River Reserve #2 PRK 2546 BLDG 001

Detailed Engineering Evaluation

Qualitative Report - SUMMARY

FINAL Version

303 Radcliffe Road, Belfast, Christchurch

Background

This is a summary of the Qualitative report for the building structure, and is based in general on the Detailed Engineering Evaluation Procedure document (draft) issued by the Structural Advisory Group on 19 July 2011 and visual inspections on 16 April 2012.

Building Description

The general structure is a 3-sided rectangular, single storey timber shed with a duo-pitch roof.

The building located at Styx River Reserve #2 is assumed to have been constructed in 1970. The site is located on mostly flat ground alongside the Styx River and alongside Radcliffe Road in Belfast, Christchurch.

Key Damage Observed

Several timber roof members have been damaged or are in a poor state of repair. Five of the truss bottom chords have been broken near mid-span, and several of the timber knee brace members are in poor condition. It is not believed that this damage is due to seismic action, but rather to poor workmanship and lack of maintenance.

Critical Structural Weaknesses

No critical structural weaknesses were identified during the assessment.

Indicative Building Strength (from IEP and CSW assessment)

Based on the information available, and using the NZSEE Initial Evaluation Procedure, the building's seismic capacity has been assessed to be in the order of 61% NBS. The building's capacity excluding damage is in the order of 71% NBS. Therefore the building is a potential Earthquake Risk.

Recommendations

It is recommended that the damaged elements of the building be repaired or replaced. No further detailed quantitative assessment is required, and building occupancy should not be restricted.

i

1. Background

GHD has been engaged by the Christchurch City Council (CCC) to undertake a detailed engineering evaluation of several buildings at the Styx River Reserve #2.

This report is a Qualitative Assessment of the building structure, and is based in general on the Detailed Engineering Evaluation Procedure document (draft) issued by the Structural Advisory Group on 19 July 2011.

A qualitative assessment involves inspections of the building and a desktop review of existing structural and geotechnical information, including existing drawings and calculations, if available.

The purpose of the assessment is to determine the likely building performance and damage patterns, to identify any potential critical structural weaknesses or collapse hazards, and to make an initial assessment of the likely building strength in terms of percentage of new building standard (%NBS).

At the time of this report, no intrusive site investigation, detailed analysis, or modelling of the building structure had been carried out. The building description is based on the visual inspection carried out on site.

2. Compliance

This section contains a brief summary of the requirements of the various statutes and authorities that control activities in relation to buildings in Christchurch at present.

2.0 Canterbury Earthquake Recovery Authority (CERA)

CERA was established on 28 March 2011 to take control of the recovery of Christchurch using powers established by the Canterbury Earthquake Recovery Act enacted on 18 April 2011. This act gives the Chief Executive Officer of CERA wide powers in relation to building safety, demolition and repair. Two relevant sections are:

Section 38 - Works

This section outlines a process in which the chief executive can give notice that a building is to be demolished and if the owner does not carry out the demolition, the chief executive can commission the demolition and recover the costs from the owner or by placing a charge on the owners' land.

Section 51 - Requiring Structural Survey

This section enables the chief executive to require a building owner, insurer or mortgagee carry out a full structural survey before the building is re-occupied.

We understand that CERA will require a detailed engineering evaluation to be carried out for all buildings (other than those exempt from the Earthquake Prone Building definition in the Building Act). It is anticipated that CERA will adopt the Detailed Engineering Evaluation Procedure document (draft) issued by the Structural Advisory Group on 19 July 2011. This document sets out a methodology for both qualitative and quantitative assessments.

The qualitative assessment is a desk-top and site inspection assessment. It is based on a thorough visual inspection of the building coupled with a review of available documentation such as drawings and specifications. The quantitative assessment involves analytical calculation of the buildings strength and may require non-destructive or destructive material testing, geotechnical testing and intrusive investigation.

It is anticipated that factors determining the extent of evaluation and strengthening level required will include:

- The importance level and occupancy of the building
- The placard status and amount of damage
- The age and structural type of the building
- Consideration of any critical structural weaknesses
- The extent of any earthquake damage

2.1 Building Act

Several sections of the Building Act are relevant when considering structural requirements:

Section 112 - Alterations

This section requires that an existing building complies with the relevant sections of the Building Code to at least the extent that it did prior to any alteration. This effectively means that a building cannot be weakened as a result of an alteration (including partial demolition).

Section 115 - Change of Use

This section requires that the territorial authority (in this case Christchurch City Council (CCC)) be satisfied that the building with a new use complies with the relevant sections of the Building Code 'as near as is reasonably practicable'. Regarding seismic capacity 'as near as reasonably practicable' has previously been interpreted by CCC as achieving a minimum of 67% NBS however where practical achieving 100% NBS is desirable. The New Zealand Society for Earthquake Engineering (NZSEE) recommend a minimum of 67% NBS.

2.1.1 Section 121 – Dangerous Buildings

The definition of dangerous building in the Act was extended by the Canterbury Earthquake (Building Act) Order 2010, and it now defines a building as dangerous if:

- In the ordinary course of events (excluding the occurrence of an earthquake), the building is likely to cause injury or death or damage to other property; or
- In the event of fire, injury or death to any persons in the building or on other property is likely because of fire hazard or the occupancy of the building; or
- There is a risk that the building could collapse or otherwise cause injury or death as a result of earthquake shaking that is less than a 'moderate earthquake' (refer to Section 122 below); or
- There is a risk that that other property could collapse or otherwise cause injury or death; or
- A territorial authority has not been able to undertake an inspection to determine whether the building is dangerous.

Section 122 - Earthquake Prone Buildings

This section defines a building as earthquake prone if its ultimate capacity would be exceeded in a 'moderate earthquake' and it would be likely to collapse causing injury or death, or damage to other property. A moderate earthquake is defined by the building regulations as one that would generate ground shaking 33% of the shaking used to design an equivalent new building.

Section 124 - Powers of Territorial Authorities

This section gives the territorial authority the power to require strengthening work within specified timeframes or to close and prevent occupancy to any building defined as dangerous or earthquake prone.

Section 131 – Earthquake Prone Building Policy

This section requires the territorial authority to adopt a specific policy for earthquake prone, dangerous and insanitary buildings.

2.2 Christchurch City Council Policy

Christchurch City Council adopted their Earthquake Prone, Dangerous and Insanitary Building Policy in 2006. This policy was amended immediately following the Darfield Earthquake of the 4th September 2010.

The 2010 amendment includes the following:

- A process for identifying, categorising and prioritising Earthquake Prone Buildings, commencing on 1 July 2012;
- A strengthening target level of 67% of a new building for buildings that are Earthquake Prone;
- A timeframe of 15-30 years for Earthquake Prone Buildings to be strengthened; and,
- Repair works for buildings damaged by earthquakes will be required to comply with the above.

The council has stated their willingness to consider retrofit proposals on a case by case basis, considering the economic impact of such a retrofit.

We anticipate that any building with a capacity of less than 33% NBS (including consideration of critical structural weaknesses) will need to be strengthened to a target of 67% NBS of new building standard as recommended by the Policy.

If strengthening works are undertaken, a building consent will be required. A requirement of the consent will require upgrade of the building to comply 'as near as is reasonably practicable' with:

- ▶ The accessibility requirements of the Building Code.
- The fire requirements of the Building Code. This is likely to require a fire report to be submitted with the building consent application.

2.3 Building Code

The building code outlines performance standards for buildings and the Building Act requires that all new buildings comply with this code. Compliance Documents published by The Department of Building and Housing can be used to demonstrate compliance with the Building Code.

After the February Earthquake, on 19 May 2011, Compliance Document B1: Structure was amended to include increased seismic design requirements for Canterbury as follows:

- ▶ Hazard Factor increased from 0.22 to 0.3 (36% increase in the basic seismic design load)
- Serviceability Return Period Factor increased from 0.25 to 0.33 (80% increase in the serviceability design loads when combined with the Hazard Factor increase)

The increase in the above factors has resulted in a reduction in the level of compliance of an existing building relative to a new building despite the capacity of the existing building not changing.

3. Earthquake Resistance Standards

For this assessment, the building's earthquake resistance is compared with the current New Zealand Building Code requirements for a new building constructed on the site. This is expressed as a percentage of new building standard (%NBS). The new building standard load requirements have been determined in accordance with the current earthquake loading standard (NZS 1170.5:2004 Structural design actions - Earthquake actions - New Zealand).

The likely capacity of this building has been derived in accordance with the New Zealand Society for Earthquake Engineering (NZSEE) guidelines 'Assessment and Improvement of the Structural Performance of Buildings in Earthquakes' (AISPBE), 2006. These guidelines provide an Initial Evaluation Procedure that assesses a buildings capacity based on a comparison of loading codes from when the building was designed and currently. It is a quick high-level procedure that can be used when undertaking a Qualitative analysis of a building. The guidelines also provide guidance on calculating a modified Ultimate Limit State capacity of the building which is much more accurate and can be used when undertaking a Quantitative analysis.

The New Zealand Society for Earthquake Engineering has proposed a way for classifying earthquake risk for existing buildings in terms of %NBS and this is shown in Figure 1 below.

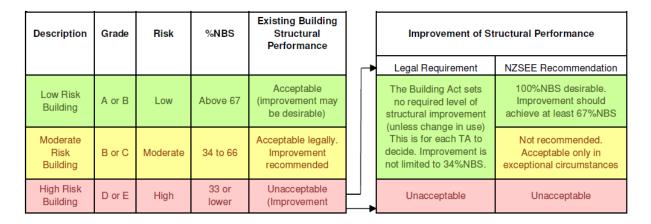


Figure 1 NZSEE Risk Classifications Extracted from table 2.2 of the NZSEE 2006 AISPBE

Table 1 compares the percentage NBS to the relative risk of the building failing in a seismic event with a 10% risk of exceedance in 50 years (i.e. 0.2% in the next year). It is noted that the current seismic risk in Christchurch results in a 6% risk of exceedance in the next year.

Percentage of New Building Standard (%NBS)	Relative Risk (Approximate)
>100	<1 time
80-100	1-2 times
67-80	2-5 times
33-67	5-10 times
20-33	10-25 times
<20	>25 times

Table 1 %NBS compared to relative risk of failure

4. Building Description

4.0 General

The timber Shed (001) at Styx River Reserve #2 is assumed to have been constructed in 1970. No plans for the Shed were available, so construction details have been observed on site. The site is located on mostly flat ground alongside the Styx River and alongside Radcliffe Road in Belfast, Christchurch. The surrounding area consists of rural lands with occasional barns and other structures.

The site is generally flat with some variation in the topography due to the river and some short, gentle hills to the north. The shed is located halfway between a man-made creek and the Styx River, roughly 20m from each. There is a heavily damaged concrete shed directly between the timber Shed (001) and the river, and three other timber barns or sheds nearby.

The general structure is a 3-sided rectangular timber shed with a duo-pitch roof. The roof consists of corrugated steel cladding atop timber sarking which is attached to timber purlins. The purlins run in the longitudinal direction of the building and are supported by shallow timber trusses oriented in the transverse direction of the building. Roughly half of the timber trusses feature knee bracing between the trusses and vertical timber studs of the external walls. Timber cross-bracing members span across the two rear corners of the roof, in plane with and attached to the underside of the bottom chords of the trusses. The load-bearing exterior walls are timber-framed and cross-braced with timber, and clad on the exterior with corrugated steel. There appears to have been a window opening in the original design of the north transverse wall that has since been framed in and clad on the exterior with the same corrugated steel that is used on the rest of the exterior walls. There are no internal walls. The front of the building (to the south) is an open entry to the barn, with a regular timber truss spanning the opening. There is no floor to the barn, only soil on-grade. The three external walls sit atop short concrete foundation walls which are supported by concrete strip footings. The dimensions of the building are approximately 11.4m long by 6.2m wide and 2.6m in height.

A plan sketch is provided in the following Figure 2 to illustrate the main structural members of the building.

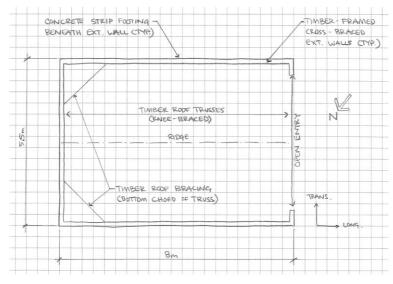


Figure 2 Plan Sketch Showing Key Structural Elements

4.1 Gravity Load Resisting System

The gravity loads in the structure are carried through the steel roof cladding to the timber roof purlins, down through the rafters, out to the timber exterior wall framing, down through the walls to the concrete footings and into the ground. At the front of the building, gravity loads from the roof structure are carried by the timber truss across the opening, into the timber posts, down into the concrete foundation walls and footings at the end posts, and into the ground.

4.2 Lateral Load Resisting System

Lateral loads on the building will be translated in the longitudinal direction through the roof cladding into the purlins, through the cross-braced trusses and into the cross-braced longitudinal walls, via marginal diaphragm action and shear through the roof-to-wall connections. Lateral loads are then transferred via diaphragm action through the cross-braced and steel-clad longitudinal walls, into the concrete foundations through shear in the anchor bolts and into the ground, and into the timber external walls.

Lateral loads in the transverse direction will be translated through the roof cladding, into the cross-braced timber trusses, into the rear cross-braced timber external wall and timber moment frames, through the concrete foundations and into the ground. The knee bracing at select truss-to-stud connections (including at the open entry) will provide for moment frame action at these locations, which will help translate lateral loads through these frames and into the foundations. The moment frame at the entry to the shed will also be aided in lateral load transfer by the external cladding attached to the frame. Similar to the longitudinal direction, cross-bracing to the bottom of the timber trusses will combine with the roof cladding, sarking, purlins and trusses to form limited diaphragm action which will carry some of the lateral loads across the roof and into the timber external walls. The cross-braced and steel-clad timber external wall at the rear of the building will transfer lateral loads in-plane to the foundations below via shear through the anchor bolt connections.

Assessment

A visual inspection of the building was undertaken on 16 April 2012. Both the interior and exterior of the building were inspected. There was no placard observed in place at the building. Most of the main structural components of the building were able to be viewed due to the exposed nature of the structure. No detailed inspection of the foundation of the structure was able to be undertaken, though the top of the concrete foundation walls were visible.

The visual inspection consisted of observing the building to determine the structural systems and likely behaviour of the building during an earthquake. The site was assessed for damage, including observing the ground conditions, checking for damage in areas where damage would be expected for the structure type observed and noting general damage observed throughout the building in both structural and non-structural elements.

The %NBS score is determined using the IEP procedure described by the NZSEE which is based on the information obtained from visual observation of the building. No critical structural weaknesses were identified during the assessment.

6. Damage Assessment

6.0 Surrounding Buildings

The Shed (001) at Styx River Reserve is located in a rural area with open lands adjacent to the site. There are a few other small sheds and barns on the same property. Most of the surrounding buildings showed little sign of seismic damage, but the nearby concrete sheds showed severe signs of damage.

6.1 Residual Displacements and General Observations

Five of the bottom chords of the timber trusses were broken at mid-span. Some of the bottom chords had been repaired with timber members of matching size, while some were left unrepaired. This damage is most likely not due to seismic action but rather poor design and the age of the timber used in the trusses, which have no internal struts, and general lack of maintenance. The timber sarking and wall framing appeared to be in good condition.

In general, the corrugated steel cladding appeared to remain reasonably well-attached for its age. There were a number of rows of nail holes in the cladding that did not line up with the existing timber framing, suggesting that the steel cladding had been reused from a previous installation. Some of the steel cladding showed spots where rust is degrading the cladding.

What could be seen of the foundation walls above-ground appeared to be in good condition and undamaged.

6.2 Ground Damage

No ground damage was observed during the inspection of the site.

Critical Structural Weakness

7.1 Short Columns

The building does not contain any significant short columns.

7.2 Lift Shaft

The building does not contain a lift shaft.

7.3 Roof

The roof structure features simple timber trusses, with continuous purlins running atop the trusses, and sarking underneath the corrugated steel cladding. The timber trusses have two timber cross-bracing members attached to the underside of the bottom chords at the rear corners of the shed. Limited diaphragm action can be expected out of the roof structure according to its design, and the roof design should not cause a premature collapse of the building during a seismic event (damage to the roof structure has been accounted for separately in the IEP assessment). The roof structure would not therefore contribute to a critical structural weakness in the form of plan irregularity for the building.

7.4 Staircases

The building does not contain a staircase.

7.5 Plan Irregularity

The building shape in plan is a simple rectangle, with one transverse side open so as to form a three-sided structure. Roughly half of the timber trusses have been knee braced to form frames which stiffen the building in the transverse direction to account for the weaker entry wall. The building therefore does not exhibit any irregularity in plan that would constitute a critical structural weakness.

7.6 Liquefaction and Lateral Spreading

No liquefaction was observed at the site. However, the geotechnical investigation has identified a high liquefaction potential for the site, as well as the potential for lateral spreading. The building is situated roughly 20m from the two nearest waterways. Liquefaction or lateral spreading should not affect the spread footings in such a way that a premature collapse of the building would be expected. Accordingly, the site characteristics do not constitute a critical structural weakness for the building.

8. Geotechnical Consideration

This desktop geotechnical study outlines the ground conditions, as indicated from sources quoted within. This is a desktop study report and no site visit has been undertaken by geotechnical personnel.

This report is only specific to the south-western section of the property at 303 Radcliffe Rd, Harewood. The property is located off Radcliffe road. It is bounded by residential and agricultural properties. The property is owned and maintained by the Christchurch City Council.

8.0 Site Description

The site is situated within a large property on the banks of the Styx River. The site is relatively flat at approximately 5m above mean sea level. It is located approximately 5km south of the Waimakariri River, and 5km west of the coast (Pegasus Bay). Running through the property there is what appears to be an old river channel, which may also have been altered mechanically in size and shape. A section of this appears to be used as a small lake, perhaps for irrigation.

8.1 Published Information on Ground Conditions

8.1.1 Published Geology

The geological map of the area¹ indicates that the site is underlain by grey river alluvium beneath plains or low-level terraces (Q1a), Holocene in age.

8.1.2 Environment Canterbury Logs

Information from Environment Canterbury (ECan) indicates three boreholes are located within a 200m of the site. However, these boreholes do not have records of the strata encountered. One borehole approximately 250m from the site indicates the ground to comprise layers of gravelly sand, sand and clay, clay-bound gravels and sand.

Table 2	ECan Borehole Sumr	narv
i abie z	ECan Borenoie Sumr	narv

Bore Name	Log Depth	Groundwater	Distance & Direction from Site
M35/8937	~30m	~0.72m bgl	250m NE

It should be noted that the purpose of the boreholes the well logs are associated with, were sunk for groundwater extraction and not for geotechnical purposes. Therefore, the amount of material recovered and available for interpretation and recording will have been variable at best and may not be representative. The logs have been written by the well driller and not a geotechnical professional or to a standard. In addition strength data is not recorded.

51/30596/74 Detailed Engineering Evaluations Shed (001) – Styx River Reserve #2

¹ Forsyth P.J., Barrell D.J.A., & Jongens R. 2008: Geology of the Christchurch Area. Institute of Geological and Nuclear Sciences 1:250,000 Geological Map 16. Lower Hutt. Institute of Geological and Nuclear Sciences Limited.

8.1.3 **EQC Geotechnical Investigations**

The Earthquake Commission has not undertaken geotechnical testing in the area of the subject site.

8.1.4 **Land Zoning**

Canterbury Earthquake Recovery Authority (CERA) has published areas showing the Green Zone Technical Category in relation to the risk of future liquefaction and how these areas are expected to perform in future earthquakes. The site is classified as Technical Category Not Applicable (TC N/A). This means that non-residential properties in urban areas, properties in rural areas or beyond the extent of land damage mapping have not been given a Technical Category.

8.1.5 Post February Aerial Photography

Aerial photography taken following the 22 February 2011 earthquake shows a large amount of material on site (and properties adjacent) that maybe liquefaction as shown in Figure 3, although this material could also be evident on the surface due to a dry summer. However, lateral spreading is visible to the south along the Styx River. Material in the base of the drainage channel appears to be sand ejected from liquefaction.

Post February 2011 Earthquake Aerial Photography ² Figure 3

8.1.6 **Summary of Ground Conditions**

From the information presented above, the ground conditions underlying the site are anticipated to comprise layers of gravelly sand, sand and clay, clay-bound gravels, and sand.

² Aerial Photography Supplied by Koordinates sourced from http://koordinates.com/layer/3185-christchurch-post-earthquake-aerialphotos-24-feb-2011/

8.2 Seismicity

8.2.1 Nearby Faults

There are many faults in the Canterbury region, however only those considered most likely to have an adverse effect on the site are detailed below.

Table 3 Summary of Known Active Faults^{3,4}

Known Active Fault	Distance from Site	Direction from Site	Max Likely Magnitude	Avg Recurrence Interval
Alpine Fault	120 km	NW	~8.3	~300 years
Greendale (2010) Fault	26 km	W	7.1	~15,000 years
Hope Fault	100 km	N	7.2~7.5	120~200 years
Kelly Fault	100 km	NW	7.2	150 years
Porters Pass Fault	60 km	NW	7.0	1100 years

Recent earthquakes since 22 February 2011 have identified the presence of a previously unmapped active fault system underneath Christchurch City and the Port Hills. Research and published information on this system is in development and not generally available. Average recurrence intervals are yet to be estimated.

8.2.2 Ground Shaking Hazard

This seismic activity has produced earthquakes of Magnitude-6.3 with peak ground accelerations (PGA) up to twice the acceleration due to gravity (2g) in some parts of the city. This has resulted in widespread liquefaction throughout Christchurch.

New Zealand Standard NZS 1170.5:2004 quantifies the Seismic Hazard factor for Christchurch as 0.30, being in a moderate to high earthquake zone. This value has been provisionally upgraded recently (from 0.22) to reflect the seismicity hazard observed in the earthquakes since 4 September 2010.

In addition, anticipation of recent alluvial deposits, a 475-year PGA (peak ground acceleration) of ~0.4 (Stirling et al, 20023), and bedrock anticipated to be in excess of 500m deep, ground shaking is expected to be moderate to high.

8.3 Slope Failure and/or Rockfall Potential

The topography surrounding the site is typically flat, and hence rockfalls are not considered to be a hazard at this site. However, given the site's proximity to the Styx River, it is considered possible that lateral spreading may occur in the area.

³ Stirling, M.W, McVerry, G.H, and Berryman K.R. (2002) A New Seismic Hazard Model for New Zealand, Bulletin of the Seismological Society of America, Vol. 92 No. 5, pp 1878-1903, June 2002.

⁴ GNS Active Faults Database

In addition, any localised retaining structures should be investigated to better establish the site-specific slope instability.

8.4 Liquefaction Potential

Due to the presence of alluvial deposits, and evidence from the post-earthquake aerial photography it is possible and likely that liquefaction will occur where sands and silts are present.

This may result in lateral spreading along and towards the Styx River, which was evident following 4 September and 22 February earthquakes, south of the subject site, or along the old river channel.

Further investigation is recommended to better determine subsoil conditions. An intrusive investigation comprising one piezocone CPT test to 20m bgl is recommended to allow a more comprehensive liquefaction assessment to be undertaken.

8.5 Conclusions & Summary

This assessment is based on a review of the geology and existing ground investigation information, and observations from the Christchurch earthquakes since 4 September 2010.

The site appears to be situated on stratified alluvial deposits, comprising gravel, sand and silt. Associated with this the site also has a moderate to high liquefaction potential, in particular where sands and/or silts are present. There is the potential for liquefaction to manifest as lateral spreading at this site.

To allow a more comprehensive liquefaction and/or ground condition assessment to be undertaken, it is recommended that an intrusive investigation comprising of at least one piezocone CPT be conducted.

A soil class of **D/E** (in accordance with NZS 1170.5:2004) should be adopted for the site. Further refinement can only be made by reviewing intrusive investigation data.

9. Survey

No level or verticality surveys have been undertaken for this building at this stage as indicated by Christchurch City Council guidelines.

10. Initial Capacity Assessment

10.1 % NBS Assessment

The building's capacity was assessed using the Initial Evaluation Procedure based on the information available. The building's capacity excluding damage and critical structural weaknesses are expressed as a percentage of new building standard (%NBS) and are in the order of that shown below in Table 4. No critical structural weaknesses were identified during the assessment, but the building was penalised for damage. These capacities are subject to confirmation by a more detailed quantitative analysis.

<u>Item</u>	%NBS
Building Capacity excluding damage	71%
Building Capacity including damage (15% reduction)	61%

Table 4 Indicative Capacities based on the NZSEE Initial Evaluation Procedure

Following an IEP assessment, the building has been assessed as achieving 61% New Building Standard (NBS). Under the New Zealand Society for Earthquake Engineering (NZSEE) guidelines the building is not considered potentially Earthquake Prone as it achieves greater than 33% NBS, but it is considered to be a potential Earthquake Risk as it does not achieve greater than 67% NBS. The overall %NBS has been reduced by 15% to account for damage to a number of roof members.

10.2 Seismic Parameters

The seismic design parameters based on current design requirements from NZS1170:2002 and the NZBC clause B1 for this building are:

- ▶ Site soil class: E, NZS 1170.5:2004, Clause 3.1.3, Very Soft Soil
- Site hazard factor, Z = 0.3, NZBC, Clause B1 Structure, Amendment 11 effective from 1 August 2011
- ▶ Return period factor R_u = 0.5, NZS 1170.5:2004, Table 3.5, Importance Level 1 structure with a 50-year design life.

Some key seismic parameters have influenced the %NBS score obtained from the IEP assessment. The building has been assessed as an Importance Level 1 building. An increased Z factor of 0.3 for Christchurch has been used in line with recommendations from the Department of Building and Housing recommendations.

10.3 Expected Structural Ductility Factor

A structural ductility factor of 1.8 has been assumed based on the structure type, condition and date of construction.

10.4 Discussion of Results

The results obtained from the initial IEP assessment are consistent with those expected for a building of this age and construction type founded on Class E soils. This building would have been designed to the standards at the time, namely NZS1900:1965. The design loads used in this standard would have been significantly less than those required by the current loading standard. When combined with the increase in the hazard factor for Christchurch to 0.3 and the potential for liquefaction and lateral spreading of the soil underneath, it is reasonable to expect the building to be classified as potentially Earthquake Prone.

10.5 Occupancy

The building does not pose an immediate risk to users and occupants as no extant collapse hazards or critical structural weaknesses have been identified. The building has scored greater than 33% NBS and is therefore not potentially Earthquake Prone. Occupancy of the building should not be restricted..

11. Initial Conclusions

The building has been assessed to have a seismic capacity in the order of 61% NBS and is therefore a potential Earthquake Risk. Occupancy of the building should not be restricted.

12. Recommendations

The building has achieved less than 67% NBS capacity according to an initial IEP assessment with damage, which classifies the building as a potential Earthquake Risk. The building does not present any collapse hazard or critical structural weaknesses. Repairing or replacing the damaged structural members in the roof will raise the building's capacity to 71% NBS. Therefore, the building should be repaired and does not require any further detailed seismic assessment. Occupancy of the building should not be restricted.

13. Limitations

13.1 General

This report has been prepared subject to the following limitations:

- No inspection of the bracing in in the timber framed walls could be undertaken.
- No intrusive structural investigations have been undertaken.
- No intrusive geotechnical investigations have been undertaken.
- No level or verticality surveys have been undertaken.
- No material testing has been undertaken.
- No calculations, other than those included as part of the IEP in the CERA Building Evaluation Report, have been undertaken. No modelling of the building for structural analysis purposes has been performed.

It is noted that this report has been prepared at the request of Christchurch City Council and is intended to be used for their purposes only. GHD accepts no responsibility for any other party or person who relies on the information contained in this report.

13.2 Geotechnical Limitations

This report presents the results of a geotechnical appraisal prepared for the purpose of this commission, and for prepared solely for the use of Christchurch City Council and their advisors. The data and advice provided herein relate only to the project and structures described herein and must be reviewed by a competent geotechnical engineer before being used for any other purpose. GHD Limited (GHD) accepts no responsibility for other use of the data.

The advice tendered in this report is based on a visual geotechnical appraisal. No subsurface investigations have been conducted. An assessment of the topographical land features have been made based on this information. It is emphasised that Geotechnical conditions may vary substantially across the site from where observations have been made. Subsurface conditions, including groundwater levels can change in a limited distance or time. In evaluation of this report cognisance should be taken of the limitations of this type of investigation.

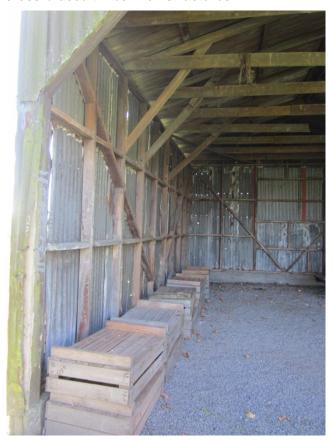
An understanding of the geotechnical site conditions depends on the integration of many pieces of information, some regional, some site specific, some structure specific and some experienced based. Hence this report should not be altered, amended or abbreviated, issued in part and issued incomplete in any way without prior checking and approval by GHD. GHD accepts no responsibility for any circumstances, which arise from the issue of the report, which have been modified in any way as outlined above.

Appendix A Photographs

Photograph 1: South elevation.

Photograph 2: North Elevation.

Photograph 3: Northwest corner elevation.



Photograph 4: Southwest corner elevation.

Photograph 5: Interior view of cross-braced and knee braced timber roof and cross-braced timber wall structures.

Photograph 6: Interior view of cross-braced external walls.

Photograph 7: Interior view of wall and roof structures and short concrete foundation wall.

Photograph 8: Interior view of cross-braced timber walls and short concrete foundation walls.

Photograph 9: Interior view of cross-braced timber walls and short concrete foundation walls.

Photograph 10: Interior view of cross-braced timber walls and roof structure and short concrete foundation walls.

Photograph 11: Timber cross-bracing of north external wall.

Photograph 12: Typical wall-to-foundation attachment.

Appendix B **Existing Drawings**

Note: no existing drawings for this building were able to be located.

Appendix C CERA Building Evaluation Form

Detailed Engineering Evaluation Summary Data V1.11 Location Building Name: Shed 001 - Styx River Reserve #2 Reviewer: Stephen Lee Unit No: Street CPEng No: 1006840 Building Address: Styx River Reserve Legal Description: Lot 3 DP 313448 303 Radcliffe Rd, Belfast, Christchurch Company: GHD Company project number: 513059674 Company phone number: 6433780900 Degrees Min Sec GPS south: 27 54.00 Date of submission: 24/05/2013 GPS east: 172 39 2.00 Inspection Date: 16/4/2012 Revision: FINAL Building Unique Identifier (CCC): PRK 2456 BLDG 001 Is there a full report with this summary? yes Site Site slope: flat Max retaining height (m): Soil type: sandy silt Soil Profile (if available): Site Class (to NZS1170.5): E Proximity to waterway (m, if <100m): If Ground improvement on site, describe: Proximity to clifftop (m, if < 100m): Proximity to cliff base (m,if <100m): Approx site elevation (m): Building Ground floor elevation (Absolute) (m): No. of storeys above ground: single storey = 1 Ground floor split? no Ground floor elevation above ground (m): Storeys below ground Foundation type: pads with tie beams if Foundation type is other, describe: Building height (m): 2.60 height from ground to level of uppermost seismic mass (for IEP only) (m): 2.4 Floor footprint area (approx): Age of Building (years): Date of design: 1965-1976 42 Strengthening present? no If so, when (year)? And what load level (%g)? Use (ground floor): public Brief strengthening description:

Gravity Structure			
Gravity System:	frame system		
Roof:	timber framed	rafter type, purlin type and cladding	
Floors:			Floor on-grade
Beams:	timber	type	
Columns:	timber	typical dimensions (mm x mm)	
Walls:	timber framed	thickness (mm)	

Use (upper floors):
Use notes (if required): Hay barn

Importance level (to NZS1170.5): IL1

Lateral load resisting structure			
Lateral system along	ightweight timber framed walls	Note: Define along and across in	note typical wall length (m) 8
Ductility assumed, µ	2.00	detailed report!	
Period along	0.12	0.00	estimate or calculation? calculated
Total deflection (ULS) (mm):		estimate or calculation?
maximum interstorey deflection (ULS) (mm			estimate or calculation?
, , , , , , , , , , , , , , , , , , , ,			
Lateral system across	timber moment frame		note typical bay length (m) 5.5
Ductility assumed, µ	2.00		3 ()
Period across		0.00	estimate or calculation? calculated
Total deflection (ULS) (mm		0.00	estimate or calculation?
maximum interstorey deflection (ULS) (mm			estimate or calculation?
maximum interesterby demodistri (OLO) (min			ostimate of balcalation.
Separations:			
north (mm	e l	leave blank if not relevant	
east (mm		ioa. o biank ir not rotovant	
south (mm			
west (mm			
west (min)	#		
Non-structural elements			
Stairs	::		
	profiled metal		describe Corrugated steel
Roof Cladding			describe Corrugated steel
Glazing	·		describe Corrugated stoor
Ceilings			Diagonal cross-bracing
Services(list			Diagonal cross bracing
On vioco(not)			
Available documentation			
Architectura	partial		original designer name/date Adjacent property records
Structura	none		original designer name/date
Mechanica			original designer name/date
Electrica			original designer name/date
Geotech repo	rt		original designer name/date
Damage			
Site: Site performance	9:		Describe damage:
(refer DEE Table 4-2)			
Settlemen	t: none observed		notes (if applicable):
Differential settlemen	t: none observed		notes (if applicable):
	none apparent		notes (if applicable): High Liquefaction Potential
	none apparent		notes (if applicable): Lateral Spread Potential
Differential lateral spread			notes (if applicable):
	none apparent		notes (if applicable):
	none apparent		notes (if applicable):
			()

Building:	Current Placard Status:				
Along	Damage ratio:			Describe how damage ratio arrived at:	
Agraga	Describe (summary): Damage ratio:	Damage to roof members	$Damage_Ratio = \frac{(\%NBS)}{(NBS)}$	before) – % NBS (after))	
Across		Damage to roof members	Damage_Rano =	% NBS (before)	
Diaphragms	Damage?:	no		Describe:	
CSWs:	Damage?:	no		Describe:	
Pounding:	Damage?:	no		Describe:	
Non-structural:	Damage?:	no		Describe:	
Recommendation	ns				
	Level of repair/strengthening required: Building Consent required: Interim occupancy recommendations:	no		Describe: Describe: Describe:	
Along	Assessed %NBS before:	71%	71% %NBS from IEP below	If IEP not used, please detail assessment	
	Assessed %NBS after:	61%		methodology:	
Across	Assessed %NBS before: Assessed %NBS after:	71% 61%	71% %NBS from IEP below		
IEP	Use of this m	ethod is not mandatory - more detailed a	nalysis may give a different answer, whi	ich would take precedence. Do not fill in t	fields if not using IEP.
	Period of design of building (from above):	·	, , , , , , , , , , , , , , , , , , ,	h₁ from above:	-
Caiamia	Zone, if designed between 1965 and 1992:			not required for this age of building	
Seismic	Zone, ii designed between 1965 and 1992.	D		not required for this age of building	
				along	across
			Period (from above (%NBS)nom from Fig 3.3		0.12 5.0%
	Note: 1 for appointing the	y design public buildings, to the code of the c	Hour pro 1065 - 1 25: 1065 1076 7ono A -	-1 22: 1065 1076 7ono B - 1 2: all also 1 0	1.00
	Note.1 for specifically	y design public buildings, to the code of the c		dings designed between 1976-1984, use 1.2	1.00
				r to 1935 use 0.8, except in Wellington (1.0)	1.0
				along	across
			Final (%NBS)non		5%
	2.2 Near Fault Scaling Factor		Near Fa	ault scaling factor, from NZS1170.5, cl 3.1.6:	1.00
	.			along	across
		N	ear Fault scaling factor (1/N(T,D), Factor A	A: 1	1

2.3 Hazard Scaling Factor		te from AS1170.5, Table 3 Z ₁₉₉₂ , from NZS4203:1 zard scaling factor, Facto	992	0.30
2.4 Return Period Scaling Factor	Building In Return Period Scaling fac	nportance level (from aboutor from Table 3.1, Facto		1 2.00
2.5 Ductility Scaling Factor Assessed Ductility scaling factor: =1 from 1976 onwards	ductility (less than max in Table 3.2) ;; or =kμ, if pre-1976, fromTable 3.3:	along 1.80 1.60		1.80 1.60
	Ductiity Scaling Factor, Factor D:	1.60		1.60
2.6 Structural Performance Scaling Factor:	Sp:	0.750		0.750
Structural Pe	erformance Scaling Factor Factor E:	1.333333333	1.	333333333
2.7 Baseline %NBS, (NBS%)b = (%NBS)nom x A x B x C x D x E	%NBS _b :	71%		71%
Global Critical Structural Weaknesses: (refer to NZSEE IEP Table 3.4)				
<u>`</u>				
3.1. Plan Irregularity, factor A: insignificant 1				
3.2. Vertical irregularity, Factor B: insignificant 1				T
3.3. Short columns, Factor C: insignificant 1	Table for selection of D1 Separation	Severe 0 <sep<.005h< td=""><td>Significant .005<sep<.01h< td=""><td>Insignificant/none Sep>.01H</td></sep<.01h<></td></sep<.005h<>	Significant .005 <sep<.01h< td=""><td>Insignificant/none Sep>.01H</td></sep<.01h<>	Insignificant/none Sep>.01H
3.4. Pounding potential Pounding effect D1, from Table to right 1.0	Alignment of floors within 20% of H		0.8	1
Height Difference effect D2, from Table to right 1.0	Alignment of floors not within 20% of H	0.4	0.7	0.8
Therefore, Factor D: 1	Table for Selection of D2	Severe	Significant	Insignificant/none
3.5. Site Characteristics insignificant 1	Separation		.005 <sep<.01h< td=""><td>Sep>.01H</td></sep<.01h<>	Sep>.01H
	Height difference > 4 storeys		0.7	1
	Height difference 2 to 4 storeys		0.9	1
	Height difference < 2 storeys		11	1
3.6. Other factors, Factor F For ≤ 3 storeys, max value =2.5, other	erwise max valule =1.5, no minimum	Along 1.0		Across 1.0
	tionale for choice of F factor, if not 1	1.0		1.0
Detail Critical Structural Weaknesses: (refer to DEE Procedure section 6) List any: Refer al 3.7. Overall Performance Achievement ratio (PAR)	Iso section 6.3.1 of DEE for discussion of F factor	modification for other criti	cal structural weakne	esses
4.3 PAR x (%NBS)b:	PAR x Baselline %NBS:	71%		71%
				7.
4.4 Percentage New Building Standard (%NBS), (before)				71

GHD

226 Antigua Street, Christchurch 8011

T: 64 3 378 0900 F: 64 3 377 8575 E: chcmail@ghd.com

© GHD Limited 2013

This document is and shall remain the property of GHD Limited. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Document Status

Rev	Author	Reviewer		Approved for Issue		
No.	Autiloi	Name	Signature	Name	Signature	Date
FINAL	Nate Oakes	Peter O'Brien	The on	Stephen Lee		24/05/2013