

Sockburn Depot – North East End Store BU 1531-008 EQ2 Detailed Engineering Evaluation Quantitative Assessment Report CHRISTCHURCH CITY COUNCIL Christchurch City Council

Sockburn Depot – North East End Store Detailed Engineering Evaluation Quantitative Assessment Report

Prepared By

(tratfero/

Joel Stratford Graduate Structural Engineer

Reviewed By

Alistair Boyce Senior Structural Engineer, CPEng 209860 Opus International Consultants Limited Christchurch Office 20 Moorhouse Avenue PO Box 1482, Christchurch Mail Centre, Christchurch 8140, New Zealand

Telephone: Facsimile: +64 3 363 5400 +64 3 365 7858

Date: Reference: Status: September 2012 6-QUCCC.68 Final

© Opus International Consultants Limited 2012

Sockburn Depot – North East End Store BU 1531-008 EQ2

Detailed Engineering Evaluation Quantitative Report – SUMMARY Final

149 Main South Road, Christchurch,

Background

This is a summary of the quantitative report for the building structure at the north east end of the Sockburn Depot, 149 Main South Road, and is based on the Detailed Engineering Evaluation Procedure document (draft) issued by the Structural Advisory Group on 19 July 2011, and visual inspections on 8 February 2012 and 13 July 2012.

Key Damage Observed

Key damage observed includes:

- Significant damage to the eastern timber stud wall. This damage may be historic;
- Deterioration of the connection detail joining the roof bracing to timber purlin at the western end;
- Significant elongation of the steel diagonal roof bracing;
- Differential lateral movement of the steel portal frames.

Critical Structural Weaknesses

The following Critical Structural Weakness has been identified:

a) Due to damage to the diagonal bracing elements in the eastern wall, the north-south lateral loads must be resisted by the portal frame columns bending out-of-plane. Due to the small column size this results in excessive longitudinal displacements.

Indicative Building Strength (from quantitative assessment)

Based on the information available, and from undertaking a quantitative assessment, the building's original capacity has been assessed to be in the order of 25% NBS and post-earthquake capacity in the order of 25% NBS. The building is therefore classed as an earthquake prone building.

Recommendations

It is recommended that:

a) A strengthening works scheme is developed to increase the seismic capacity of the building to at least 67% NBS at IL2; this will need to consider compliance with accessibility and fire requirements.

Contents

1	Introduction1
2	Compliance1
3	Earthquake Resistance Standards4
4	Background Information7
5	Structural Damage
6	Detailed Seismic Assessment8
7	Summary of Geotechnical Review11
8	Remedial Options11
9	Conclusions11
10	Recommendations12
11	Limitations12
12	References
Арре	endix 1 - Photographs
Арре	endix 2 - Quantitative Assessment Methodology and Assumptions

Appendix 3 – CERA DEE Spreadsheet

1 Introduction

Opus International Consultants Limited has been engaged by Christchurch City Council to undertake a detailed seismic assessment of the North East End Store at the Sockburn Depot, located at 149 Main South Road, Christchurch following the M6.3 Christchurch earthquake on 22 February 2011.

The purpose of the assessment is to determine if the building is classed as being earthquake prone in accordance with the Building Act 2004.

The seismic assessment and reporting have been undertaken based on the qualitative and quantitative procedures detailed in the Detailed Engineering Evaluation Procedure (DEEP) document (draft) issued by the Structural Engineering Society (SESOC) on 19 July 2011.

2 Compliance

This section contains a brief summary of the requirements of the various statutes and authorities that control activities in relation to buildings in Christchurch at present.

2.1 Canterbury Earthquake Recovery Authority (CERA)

CERA was established on 28 March 2011 to take control of the recovery of Christchurch using powers established by the Canterbury Earthquake Recovery Act enacted on 18 April 2011. This act gives the Chief Executive Officer of CERA wide powers in relation to building safety, demolition and repair. Two relevant sections are:

Section 38 – Works

This section outlines a process in which the chief executive can give notice that a building is to be demolished and if the owner does not carry out the demolition, the chief executive can commission the demolition and recover the costs from the owner or by placing a charge on the owners' land.

Section 51 – Requiring Structural Survey

This section enables the chief executive to require a building owner, insurer or mortgagee to carry out a full structural survey before the building is re-occupied.

We understand that CERA require a detailed engineering evaluation to be carried out for all buildings (other than those exempt from the Earthquake Prone Building definition in the Building Act). CERA have adopted the Detailed Engineering Evaluation Procedure (DEEP) document (draft) issued by the Structural Engineering Society (SESOC) on 19 July 2011. This document sets out a methodology for both initial qualitative and detailed quantitative assessments.

It is anticipated that a number of factors, including the following, will determine the extent of evaluation and strengthening level required:

1. The importance level and occupancy of the building.

- 2. The placard status and amount of damage.
- 3. The age and structural type of the building.
- 4. Consideration of any critical structural weaknesses.

Any building with a capacity of less than 34% of new building standard (including consideration of critical structural weaknesses) will need to be strengthened to a target of 67% as required by the CCC Earthquake Prone Building Policy.

2.2 Building Act

Several sections of the Building Act are relevant when considering structural requirements:

Section 112 - Alterations

This section requires that an existing building complies with the relevant sections of the Building Code to at least the extent that it did prior to the alteration.

This effectively means that a building cannot be weakened as a result of an alteration (including partial demolition).

Section 115 – Change of Use

This section requires that the territorial authority (in this case Christchurch City Council (CCC)) is satisfied that the building with a new use complies with the relevant sections of the Building Code 'as near as is reasonably practicable'.

This is typically interpreted by CCC as being 67% of the strength of an equivalent new building. This is also the minimum level recommended by the New Zealand Society for Earthquake Engineering (NZSEE).

Section 121 – Dangerous Buildings

This section was extended by the Canterbury Earthquake (Building Act) Order 2010, and defines a building as dangerous if:

- 1. In the ordinary course of events (excluding the occurrence of an earthquake), the building is likely to cause injury or death or damage to other property; or
- 2. In the event of fire, injury or death to any persons in the building or on other property is likely because of fire hazard or the occupancy of the building; or
- 3. There is a risk that the building could collapse or otherwise cause injury or death as a result of earthquake shaking that is less than a 'moderate earthquake' (refer to Section 122 below); or
- 4. There is a risk that other property could collapse or otherwise cause injury or death; or
- 5. A territorial authority has not been able to undertake an inspection to determine whether the building is dangerous.

Section 122 – Earthquake Prone Buildings

This section defines a building as earthquake prone (EPB) if its ultimate capacity would be exceeded in a 'moderate earthquake' and it would be likely to collapse causing injury or death, or damage to other property.

A moderate earthquake is defined by the building regulations as one that would generate loads 33% of those used to design an equivalent new building.

Section 124 – Powers of Territorial Authorities

This section gives the territorial authority the power to require strengthening work within specified timeframes or to close and prevent occupancy to any building defined as dangerous or earthquake prone.

Section 131 – Earthquake Prone Building Policy

This section requires the territorial authority to adopt a specific policy for earthquake prone, dangerous and insanitary buildings.

2.3 Christchurch City Council Policy

Christchurch City Council adopted their Earthquake Prone, Dangerous and Insanitary Building Policy in 2006. This policy was amended immediately following the Darfield Earthquake on 4 September 2010.

The 2010 amendment includes the following:

- 1. A process for identifying, categorising and prioritising Earthquake Prone Buildings, commencing on 1 July 2012;
- 2. A strengthening target level of 67% of a new building for buildings that are Earthquake Prone;
- 3. A timeframe of 15-30 years for Earthquake Prone Buildings to be strengthened; and,
- 4. Repair works for buildings damaged by earthquakes will be required to comply with the above.

The council has stated their willingness to consider retrofit proposals on a case by case basis, considering the economic impact of such a retrofit.

If strengthening works are undertaken, a building consent will be required. A requirement of the consent will require upgrade of the building to comply 'as near as is reasonably practicable' with:

- The accessibility requirements of the Building Code.
- The fire requirements of the Building Code. This is likely to require a fire report to be submitted with the building consent application.

2.4 Building Code

The Building Code outlines performance standards for buildings and the Building Act requires that all new buildings comply with this code. Compliance Documents published by The Department of Building and Housing can be used to demonstrate compliance with the Building Code.

On 19 May 2011, Compliance Document B1: Structure was amended to include increased seismic design requirements for Canterbury as follows:

- 36% increase in the basic seismic design load for Christchurch (Z factor increased from 0.22 to 0.3);
- Increased serviceability requirements.

2.5 Institution of Professional Engineers New Zealand (IPENZ) Code of Ethics

One of the core ethical values of professional engineers in New Zealand is the protection of life and safeguarding of people. The IPENZ Code of Ethics requires that:

Members shall recognise the need to protect life and to safeguard people, and in their engineering activities shall act to address this need.

- 1.1 Giving Priority to the safety and well-being of the community and having regard to this principle in assessing obligations to clients, employers and colleagues.
- 1.2 Ensuring that responsible steps are taken to minimise the risk of loss of life, injury or suffering which may result from your engineering activities, either directly or indirectly.

All recommendations on building occupancy and access must be made with these fundamental obligations in mind.

3 Earthquake Resistance Standards

For this assessment, the building's earthquake resistance is compared with the current New Zealand Building Code requirements for a new building constructed on the site. This is expressed as a percentage of new building standard (%NBS). The loadings are in accordance with the current earthquake loading standard NZS1170.5 [1].

A generally accepted classification of earthquake risk for existing buildings in terms of %NBS that has been proposed by the NZSEE 2006 [2] is presented in Figure 1 below.

Description	Grade	Risk	%NBS	Existing Building Structural Performance		Improvement of Structural Performance	
					┌►	Legal Requirement	NZSEE Recommendation
Low Risk Building	A or B	Low	Above 67	Acceptable (improvement may be desirable)		The Building Act sets no required level of structural improvement (unless change in use)	100%NBS desirable. Improvement should achieve at least 67%NBS
Moderate Risk Building	B or C	Moderate	34 to 66	Acceptable legally. Improvement recommended		decide. Improvement is not limited to 34%NBS.	Not recommended. Acceptable only in exceptional circumstances
High Risk Building	D or E	High	33 or Iower	Unacceptable (Improvement required under Act)		Unacceptable	Unacceptable

Figure 1: NZSEE Risk Classifications Extracted from table 2.2 of the NZSEE 2006 AISPBE Guidelines

Table 1 below compares the percentage NBS to the relative risk of the building failing in a seismic event with a 10% risk of exceedance in 50 years (i.e. 0.2% in the next year).

Percentage of New Building Standard (%NBS)	Relative Risk (Approximate)
>100	<1 time
80-100	1-2 times
67-80	2-5 times
33-67	5-10 times
20-33	10-25 times
<20	>25 times

Table 1: %NBS compared to relative risk of failure

3.1 Minimum and Recommended Standards

Based on governing policy and recent observations, Opus makes the following general recommendations:

3.1.1 Occupancy

- The Canterbury Earthquake Orderⁱ in Council 16 September 2010, modified the meaning of "dangerous building" to include buildings that were identified as being EPB's. As a result of this, we would expect such a building would be issued with a Section 124 notice, by the Territorial Authority, or CERA acting on their behalf, once they are made aware of our assessment. Based on information received from CERA to date, this notice is likely to prohibit occupancy of the building (or parts).

thereof), until its seismic capacity is improved to the point that it is no longer considered an EPB.

3.1.2 Cordoning

 Where there is an overhead falling hazard, or potential collapse hazard of the building, the areas of concern should be cordoned off in accordance with current CERA/Territorial Authority guidelines.

3.1.3 Strengthening

- Industry guidelines (NZSEE 2006 [2]) strongly recommend that every effort be made to achieve improvement to at least 67%NBS. A strengthening solution to anything less than 67%NBS would not provide an adequate reduction to the level of risk.
- It should be noted that full compliance with the current building code requires building strength of 100%NBS.

3.1.4 Our Ethical Obligation

 In accordance with the IPENZ code of ethics, we have a duty of care to the public. This obligation requires us to identify and inform CERA of potentially dangerous buildings; this would include earthquake prone buildings.

ⁱ This Order only applies to buildings within the Christchurch City, Selwyn District and Waimakariri District Councils authority

4 Background Information

4.1 Building Description

The Store located in the north east end of the Sockburn Depot is a single storey portal frame structure. The Sockburn Depot site is located at 149 Main South Road, Sockburn. The original date of construction of the Store is unknown, but is expected to be prior to the 1970s.

The building and wider Sockburn Depot site backs onto Blenheim Road. For the purposes of this report we will refer to the longitudinal direction as north-south and the transverse direction as east-west (parallel to Blenheim Road).

4.2 Gravity Load Resisting System

The building has five steel portal frames spanning the transverse (east-west) direction.

The lightweight roof cladding is supported by 150x50mm timber purlins spanning between the tapered steel portal frames.

Ground floor dead and live loads are carried directly by the compacted gravel floor.

The foundations appear to consist of an unknown length of steel parallel flange channel section driven into the ground, with the portal frame columns welded to these sections.

The building has roof and wall cladding of corrugated iron and timber framing.

4.3 Lateral Load Resisting System

The lateral load resisting system in the transverse (east-west) direction consists of steel portal frames acting in-plane. There are five steel portal frames, with diagonal roof bracing elements in both the north and south end bays.

The lateral loads on the roof are transferred through the timber purlins to the moment resisting steel portal frames. Acting in-plane, the steel portals transfer the load to the foundations.

The end walls consist of corrugated iron and timber framing, with a diagonal timber brace member to transfer east-west lateral loads down to the base of the building.

The lateral load resisting system in the longitudinal (north-south) direction consists of the steel portal frames cantilevering out-of-plane, with diagonal bracing in the plane of the roof. In places this diagonal bracing has been cut off short of the western wall in order to allow for the installation of roller shutter doors. This results in an incomplete primary load path, however an indirect load path still exists via out-of-plane bending of purlins and the portal frame rafter.

The diagonal timber bracing elements in the eastern perimeter wall have significant historical damage, compromising the load path for resisting north-south lateral loads. Due to insufficient load paths the portal frames must resist loads out-of-plane by cantilevering

from the base. This response is undesirable, and will be indicative of reduced seismic performance due to increased seismic displacements.

4.4 Survey

4.4.1 Post 22 February 2011 Rapid Assessment

A structural (Level 2) assessment of the above property was undertaken on 26 February 2011 by Opus International Consultants. The whole building was assessed during this inspection.

4.4.2 Further Inspections

Further inspections were undertaken by Opus International Consultants on 13 July 2012.

4.5 Original Documentation

No original construction drawings were available from the Christchurch City Council.

5 Structural Damage

The following damage has been noted:

5.1 Residual Displacements

There is some differential global displacement observed in the longitudinal direction.

5.2 Eastern Perimeter Wall

Some historical damage to the wall cladding and timber bracing struts was observed. We note that this damage has compromised the load path for resisting north-south lateral loads.

5.3 Diagonal Roof Bracing

One of the diagonal roof braces at the southern end appears to have elongated under seismic loading.

5.4 Non Structural Elements

Some historical damage and deterioration was observed to non-structural elements.

6 Detailed Seismic Assessment

The detailed seismic assessment has been based on the NZSEE 2006 [2] guidelines for the "Assessment and Improvement of the Structural Performance of Buildings in Earthquakes" together with the "Guidance on Detailed Engineering Evaluation of Earthquake Affected Non-residential Buildings in Canterbury, Part 2 Evaluation Procedure" [3] draft document prepared by the Engineering Advisory Group on 19 July 2011, and the SESOC guidelines "Practice Note – Design of Conventional Structural Systems Following Canterbury Earthquakes" [5] issued on 21 December 2011.

6.1 Critical Structural Weaknesses

The term Critical Structural Weakness (CSW) refers to a component of a building that could contribute to increased levels of damage or cause premature collapse of a building. We have identified the following CSW's for this building:

a) Lack of North-South Bracing

Due to damage to the diagonal bracing elements in the eastern wall, the north-south lateral loads must be resisted by the portal frame columns bending out-of-plane. Due to the small column size this results in excessive longitudinal displacements. The foundation details for these columns are unknown.

6.2 Quantitative Assessment Methodology

The assessment assumptions and methodology have been included in Appendix 3 of the report due to the technical nature of the content. A brief summary follows:

An equivalent static analysis was carried out on the building using the spectral values established from NZS1170.5 [1], with an updated Z factor of 0.3 (B1/VM1) and a ductility factor of 1.25. These analyses were used to establish the actions on the structural elements. Based on the actions determined from the analyses, an assessment of the building capacities was made.

6.3 Limitations and Assumptions in Results

Our analysis and assessment is based on an assessment of the building in its undamaged state. Therefore the current capacity of the building may be lower than that stated.

The results have been reported as a %NBS and the stated value is that obtained from our analysis and assessment. Despite the use of best national and international practice in this analysis and assessment, this value contains uncertainty due to the many assumptions and simplifications which are made during the assessment. These include:

- Simplifications made in the analysis, including boundary conditions such as foundation fixity.
- Assessments of material strengths based on limited drawings, specifications and site inspections.
- The normal variation in material properties which change from batch to batch.
- Approximations made in the assessment of the capacity of each element, especially when considering the post-yield behaviour.

6.4 Quantitative Assessment

A summary of the structural performance of the building is shown in the following table. Note that the values given represent the worst performing elements in the building, as these effectively define the building's capacity. Other elements within the building may have

significantly greater capacity when compared with the governing elements. This will be considered further when developing the strengthening options.

Structural Element/System	Failure Mode, or description of limiting criteria based on displacement capacity of critical element.	% NBS based on calculated capacity
Moment resisting portal frames – north south direction (out-of-plane)	Flexural failure of the steel portal frame columns, cantilevering out-of-plane from the base.	25%
Building drift – Iongitudinal direction	The building drift at ultimate limit state exceeds deflection limits.	25%
Diagonal roof bracing – north south direction	The 50x50EA diagonal roof braces act in tension to transfer load between portals. The performance of the roof bracing will be governed by the capacity of the end connections.	<34%
Moment resisting portal frames – east west direction (in- plane)	Flexural failure, resulting in compression buckling failure of the moment resisting portal frame columns acting in plane.	86%
Portal frame foundations	Tensile failure of the foundations under uplift conditions. The foundation details are currently unknown, but likely do not have the capacity to resist uplift force demands.	Details unknown so no capacity could be calculated. Expected to be <67%

Table 2: Summary of Seismic Performance – μ = 1.25

6.5 Discussion

Given the low seismic capacities described in Table 2 above, the building is considered earthquake prone in accordance with the Building Act 2004. The building is not expected to have a brittle failure mode or a global collapse mechanism.

The current seismic performance of the structure is limited by the lack of a reliable load path in the longitudinal (north-south) direction. This results in the moment resisting steel portal frames cantilevering out-of-plane, undergoing excessive displacements at ultimate limit state.

The roof bracing elements at the west end of the building have been cut off short of the column centrelines to accommodate the installation of the roller doors. This creates an indirect load path, inducing a load eccentricity and local bending of the purlin members and portal frame rafters.

7 Summary of Geotechnical Review

Following a site walkover and background investigations, a geotechnical desk study on the site was deemed unnecessary.

This is based on the knowledge that liquefaction is not predicted at the site (ECan Solid Facts map). The closest location of surface expression of liquefaction was recorded approximately 0.5km northwest, following the February 2011 earthquake. Surrounding residential areas have been zoned TC1, thus future land damage from liquefaction is considered to be unlikely.

The site is expected to be underlain by up to 5m of fine grained soils (sand and silt layers), and then predominantly gravel and gravelly sand (based on Soils and Foundations Ltd maps). Conversely, the ground water level is expected to be approximately 5.0m below ground level (Brown and Weeber groundwater maps).

8 Remedial Options

The building requires repair and strengthening, with a target of increasing the seismic performance to as near as practicable to 100%NBS, and at least 67%NBS. Our concept strengthening scheme to achieve this would include:

- a) Repairing the timber frame iron-clad walls, and upgrading of the diagonal wall bracing members for resisting north-south loads.
- b) Improving the diagonal roof bracing, particularly where member elongation has occurred, to reinstate the load path.
- c) Investigation of the foundations and possible strengthening if required.

9 Conclusions

- a) The seismic performance of the original building is governed by the moment resisting steel portal frames, which have an expected strength of 25%NBS in the longitudinal direction (north-south) and 86%NBS in the transverse direction (east-west). The building is therefore considered to be earthquake prone in accordance with the Building Act 2004.
- b) A geotechnical desk study was not required for this site. This was based on the unlikely future land damage at the site from liquefaction, and the absence of observed ground damage during site investigations.
- c) The building is considered earthquake prone in accordance with the Building Act 2004. The building is expected to have a non-brittle failure mode based on the performance of the moment resisting steel portal frames. It is considered that the building does not have a global collapse mechanism.

- d) Strengthening the building to at least 67% is recommended. Strengthening works would include retrofit of the diagonal bracing elements of the building to upgrade the load path in the longitudinal direction for north-south seismic loads.
- e) The foundation details are currently unknown, and a trial pit needs to be dug to investigate the existing foundations prior to undertaking any strengthening works.

10 Recommendations

- a) Develop a strengthening works scheme to increase the seismic capacity of the building to at least 67% NBS. This will need to consider compliance with accessibility and fire requirements.
- b) A quantity surveyor be engaged to determine the costs for either strengthening the building or demolishing and rebuilding.

11 Limitations

- a) This report is based on an inspection of the building and focuses on the structural damage resulting from the 22 February 2011 Canterbury Earthquake and aftershocks only. Some non-structural damage is described but this is not intended to be a complete list of damage to non-structural items.
- b) Our professional services are performed using a degree of care and skill normally exercised, under similar circumstances, by reputable consultants practicing in this field at this time.
- c) This report is prepared for CCC to assist with assessing the remedial works required for council buildings and facilities. It is not intended for any other party or purpose.

12 References

[1] NZS 1170.5: 2004, *Structural design actions, Part 5 Earthquake actions,* Standards New Zealand.

[2] NZSEE: 2006, Assessment and improvement of the structural performance of buildings in *earthquakes*, New Zealand Society for Earthquake Engineering.

[3] Engineering Advisory Group, *Guidance on Detailed Engineering Evaluation of Earthquake Affected Non-residential Buildings in Canterbury, Part 2 Evaluation Procedure*, Draft Prepared by the Engineering Advisory Group, Revision 5, 19 July 2011.

[4] Engineering Advisory Group, *Guidance on Detailed Engineering Evaluation of Nonresidential buildings, Part 3 Technical Guidance*, Draft Prepared by the Engineering Advisory Group, 13 December 2011.

[5] SESOC, *Practice Note – Design of Conventional Structural Systems Following Canterbury Earthquakes*, Structural Engineering Society of New Zealand, 21 December 2011.

6-QUCCC.68

Appendix 1 - Photographs

September 2012

North East End Store – Sockburn Depot, 149 Main South Road						
No.	Item description	Photo				
General						
1.	View of the northwest end of the building					
2.	Roller door access on the west face of the building					
3.	View of the southeast corner of the building					

Sockburn Depot – North East End Store 149 Main South Road, Christchurch

4.	Internal view of the north end wall	
5.	Internal view of the south wall	
6.	Diagonal roof bracing (note they are cut off to allow installation of the roller door)	
7.	Portal Knee detail (east side) – Tapered Flange Beam (125TFB) with Parallel Flange Channel (100PFC)	

Sockburn Depot – North East End Store 149 Main South Road, Christchurch

8.	Portal Knee detail (north west end) – Tapered Flange Beam Portal (125TFB) with Parallel Flange Channel Chord (150PFC) and Equal Angle Roof Brace (EA50x50)	
9.	Portal Frame - Tapered Flange Beam measure up	
10.	Timber framing with diagonal wall bracing	
11.	Timber framing with discontinuous/insufficient diagonal wall bracing	

Appendix 2 - Quantitative Assessment Methodology and Assumptions

A2.1. Reference Documents

- AS/NZS 1170.0:2002, *Structural design actions, Part 0: General principles*, Standards New Zealand.
- AS/NZS 1170.1:2002, *Structural design actions, Part1: Permanent, imposed and other actions,* Standards New Zealand.
- NZS1170.5:2004, *Structural design actions, Part 5: Earthquake actions New Zealand,* Standards New Zealand.
- NZS 3404: Part 1:1997, *Steel Structures Standard, The Design of Steel Structures,* Standards New Zealand.
- NZSEE: 2006, Assessment and improvement of the structural performance of buildings in earthquakes, New Zealand Society for Earthquake Engineering.
- Engineering Advisory Group, *Guidance on Detailed Engineering Evaluation of Earthquake Affected Non-residential Buildings in Canterbury, Part 2 Evaluation Procedure,* Draft Prepared by the Engineering Advisory Group, Revision 5, 19 July 2011.

A2.2. Analysis Parameters

The following parameters are used for the seismic analysis

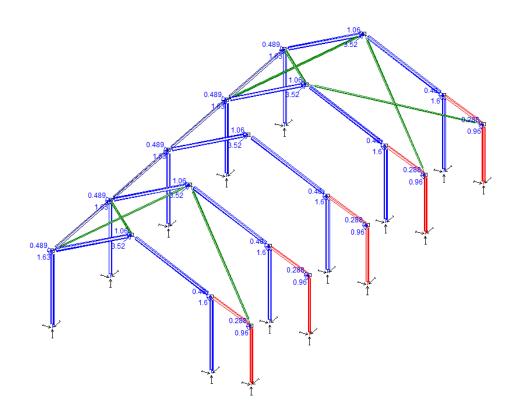
- Site Soil Category D (deep and soft soil);
- Seismic Hazard Factor Z = 0.3;
- Return Period Factor Ru = 1.0 (Importance Level 2 structure, 50 year design life);
- Ductility Factor μ = 1.25 (Nominally Ductile Structure in accordance with requirements outlined in NZS1170.5:2004);
- Structural Performance Factor Sp =0.925.

A2.3. Material Properties

Table A1: Analysis Material Properties

Mild reinforcing nominal yield strength, fy (MPa) (2)	250
Probable steel yield strength, fy (MPa) ⁽¹⁾	270

Notes:


1. Based on guidance from *NZSEE 2006*, probable reinforcement yield strength is based on a value of 1.08 times the nominal yield strength (Cl. 7.1.1)

2. Based on guidelines from Bridge Manual 2004, characteristic yield strength of reinforcement for historical construction.

A2.4. Assessment Methodology

Equivalent Static Analysis

The building was analysed as being nominally ductile ($\mu = 1.25$). The design actions were applied separately in each perpendicular direction, with 100% for the first axis plus 30% on the second axis, and then 30% in the first axis and 100% in the second axis, as required by NZS1170.5:2006 for nominally ductile and brittle structures (Clause 5.3.1.2). The building was assessed at Importance Level 2 (IL2).

Element force demands were extracted from the equivalent static analysis and compared to calculated capacities based on steel material properties assumed in Table A1. The results of these capacity to demand ratio checks are summarised in further detail in the report and presented as %NBS.

Appendix 3 – CERA DEE Spreadsheet

	ing Evaluation Summary Data				V1
Location		Store North East End - Sockburn Depot Unit	No: Street	Reviewer: CPEng No:	209
	Building Address: Legal Description:		149 Main South Road	Company: Company project number: Company phone number:	Opus International Consultants Ltd 6-QUCCC.68 6433635-
	GPS south: GPS east:	43	Min Sec 32 18.96 33 20.65	Date of submission: Inspection Date:	20/09/20 13/07/20
	Building Unique Identifier (CCC):			Revision: a full report with this summary?	Final
ite					
ite	Site slope: Soil type:	mixed		Max retaining height (m): Soil Profile (if available):	
	Site Class (to NZS1170.5): Proximity to waterway (m, if <100m): Proximity to clifftop (m, if < 100m):		If Ground	improvement on site, describe:	[
	Proximity to cliff base (m,if <100m):			Approx site elevation (m):	15.
uilding	No. of storeys above ground:	1	single storey = 1 Ground	d floor elevation (Absolute) (m):	15.
	Ground floor split? Storeys below ground Foundation type			or elevation above ground (m): ndation type is other, describe:	0.
	Building height (m): Floor footprint area (approx): Age of Building (years):	5.25	height from ground to level of uppermost s	eismic mass (for IEP only) (m):	
				Date of design:	
	Strengthening present? Use (ground floor):			If so, when (year)? And what load level (%g)? Brief strengthening description:	
	Use (upper floors): Use notes (if required): Importance level (to NZS1170.5):	Storage			
aravity Structure			·		
	Floors:	timber framed other (note)	rafte	r type, purlin type and cladding describe sytem	
	Columns:	steel non-composite structural steel non-load bearing		beam and connector type typical dimensions (mm x mm) 0	
ateral load resisting	g structure	welded and bolted steel moment frame	Note: Define along and across in		[
	Ductility assumed, µ: Period along:	0.71	detailed report! 0.49 from parameters in sheet	note typical bay length (m) estimate or calculation?	calculated
	Total deflection (ULS) (mm): maximum interstorey deflection (ULS) (mm):			estimate or calculation? estimate or calculation?	calculated calculated
	Ductility assumed, µ	welded and bolted steel moment frame 1.25		note typical bay length (m)	4.5m between portals
	Period across: Total deflection (ULS) (mm): maximum interstorey deflection (ULS) (mm):		0.00	estimate or calculation? estimate or calculation? estimate or calculation?	calculated
eparations:	north (mm):		leave blank if not relevant		
	east (mm): south (mm):				
Ion-structural elem					
	Stairs:	profiled metal		describe	
	Glazing: Ceilings:			Country	
	Services(list):				
Available docume	ntation Architectural Structural	none		original designer name/date original designer name/date	
	Mechanical Electrical Geotech report	none		original designer name/date original designer name/date	
	Geotecn report			original designer name/date	
Damage <u>Site:</u> refer DEE Table 4-	2) Site performance:		l i i i i i i i i i i i i i i i i i i i	Describe damage:	
	Settlement: Differential settlement:	none observed none observed none apparent		notes (if applicable): notes (if applicable): notes (if applicable):	
	Lateral Spread: Differential lateral spread:	0-50mm none apparent		notes (if applicable): notes (if applicable):	
	Ground cracks: Damage to area:	none apparent none apparent		notes (if applicable): notes (if applicable):	
Building:	Current Placard Status:	green			
Along	Damage ratio: Describe (summary):			be how damage ratio arrived at:	[
Across	Damage ratio: Describe (summary):		$Damage _Ratio = \frac{(\% NBS (before) - 6)}{\% NBS (be}$		
Diaphragms	Damage?			Describe:	
CSWs:	Damage?:			Describe:	
Pounding: Non-structural:	Damage?: Damage?:			Describe: Describe:	
Recommendation	e				
recommendation	Level of repair/strengthening required: Building Consent required:	significant structural and strengthening yes			
Along	Interim occupancy recommendations: Assessed %NBS before e'quakes:		##### %NBS from IEP below If IEP not a	Describe: used, please detail assessment	Quantitative Assessment
Across	Assessed %NBS after e'quakes: Assessed %NBS before e'quakes:		##### %NBS from IEP below	methodology:	
	Assessed %NBS after e'quakes:	86%			
EP			analysis may give a different answer, which would take		
Seismi	Period of design of building (from above): c Zone, if designed between 1965 and 1992:		not	hn from above: required for this age of building	
				required for this age of building	
			Period (from above): (%NBS)nom from Fig 3.3:	along 0.71	across 0.71
	Note:1 for speci	fically design public buildings, to the code of th	e day: pre-1965 = 1.25; 1965-1976, Zone A =1.33; 1965-1 Note 2: for RC buildings designed	976, Zone B = 1.2; all else 1.0 d between 1976-1984, use 1.2	1.00
			Note 3: for buildings designed prior to 1935 use	0.8, except in Wellington (1.0)	1.0
			Final (%NBS)nom:	along 0%	across 0%
	2.2 Near Fault Scaling Factor		Near Fault scaling fai	ctor, from NZS1170.5, cl 3.1.6: along	1.00 across
			Near Fault scaling factor (1/N(T,D), Factor A:	1	1
	2.3 Hazard Scaling Factor			site from AS1170.5, Table 3.3: Z1992, from NZS4203:1992 azard scaling factor, Factor B:	#DIV/0!
	2.4 Return Period Scaling Factor			Importance level (from above):	
	a country ration			actor from Table 3.1, Factor C:	
	2.5 Ductility Scaling Factor	Ductility scaling factor: =1 from 197	Assessed ductility (less than max in Table 3.2) 6 onwards; or =kµ, if pre-1976, fromTable 3.3:	along 1.00	across 1.00
			Ductiity Scaling Factor, Factor D:	0.00	0.00
	2.6 Structural Performance Scaling F		Sp:	1.000	1.000
			uctural Performance Scaling Factor Factor E:	1	1
	2.7 Baseline %NBS, (NBS%)b = (%NBS		%NBSb:	#DIV/0!	#DIV/0!
	Global Critical Structural Weaknesses: 3.1. Plan Irregularity, factor A:	(relef to NZSEE IEP Table 3.4)	1		
	3.2. Vertical irregularity, Factor B:		1		
	3.3. Short columns, Factor C:		Table for selection of D1 Separation		Significant Insignificant/none 05 <sep<.01h< td=""> Sep>.01H</sep<.01h<>
	3.4. Pounding potential Hereit	Pounding effect D1, from Table to right eight Difference effect D2, from Table to right	1.0 Alignment of floors within 20% of H	0.7	0.8 1 0.7 0.8
		Therefore, Factor D:		Severe	Significant Insignificant/none 05 <sep<.01h sep="">.01H</sep<.01h>
	3.5. Site Characteristics		1 Separation Height difference > 4 storeys Height difference 2 to 4 storeys	0.4	0.7 1 0.9 1
			Height difference < 2 storeys	1	1 1
	3.6. Other factors, Factor F	For ≤ 3 storeys, max value	=2.5, otherwise max valule =1.5, no minimum Rationale for choice of F factor, if not 1	Along	Across
	Datail Oritige Discore	(refer to DEE Brock time)			
	Detail Critical Structural Weaknesses: List any:		Refer also section 6.3.1 of DEE for discussion of F factor m		
	3.7. Overall Performance Achievemer	it ratio (PAR)		0.00	0.00
	4.3 PAR x (%NBS)b:		PAR x Baselline %NBS:	#DIV/0!	#DIV/0!
	4.4 Percentage New Building Standar	d (%NBS), (before)			#DIV/0!

