

Styx Stormwater Management Plan Sediment Quality Monitoring February 2014

Dr Belinda Whyte Asset and Network Planning Unit

Styx Stormwater Management Plan Sediment Quality Monitoring February 2014

1	INTRODUCTION UPDATE FIELD1
2	METHODS 1
2.1	Sites and Sample Collection1
2.2	Sediment Quality Parameters Tested2
2.3	Statistical Analyses
3	RESULTS
3.1	Total Copper4
3.2	Total Lead5
3.3	Total Zinc
3.4	TOC7
3.5	PAHs
3.6	Particle Size Distribution9
4	DISCUSSION 11
RE	FERENCES
5	APPENDIX A: LABORATORY REPORTS
6	APPENDIX B: CHI-SQUARE TEST RESULTS

1 Introduction update field

The resource consent for the Styx Stormwater Management Plan (Styx SMP; CRC131249) commenced on the 24 October 2013 and includes conditions relating to the monitoring of sediment quality. According to Section 3.1 of this report, state of the environment monitoring of sediment quality should be undertaken at twelve sites every five years. These sites generally coincide with water quality and ecology monitoring sites. The last survey was undertaken in 2009 as part of the consent application process and therefore another survey was due in 2014. This report summarises the results of this 2014 monitoring.

2 Methods

2.1 Sites and Sample Collection

There are twelve sites in the monitoring program within the Styx River catchment: seven sites in the Styx River mainstem, one site in Smacks Creek, two sites in Kaputone Creek, one site in Wilsons Drain and another site in Horners Drain (Table 1). One-off samples from these sites were collected by the Christchurch City Council laboratory staff on the 27th February 2014. The exception to this was the site in Smacks Creek, which was not sampled as there was not enough sediment available to do so. This is likely due to the habitat at this site, as no sediment dredging for maintenance has been undertaken in this location. All samples were collected according to the protocol outlined in the monitoring plan.

Table 1. Sediment qualit	v monitorina site	s of the Stvx	Stormwater Management Plan
Tuble I. Ocument quant	y mornioning one		

Site	Easting	Northing
Styx River at Sawyers Arms Road	2476194	5747792
Smacks Creek upstream of Husseys Road	2477072	5749363
Styx River at Styx Mill Conservation Reserve	2478629	5749061
Styx River at Main North Road	2479110	5748827
Styx River at Redwood springs	2480092	5749035
Kaputone Creek at Blakes Road	2480384	5749665
Kaputone Creek at Belfast Road	2482200	5749890
Styx River at Marshland Road	2482364	5749401
Styx River at Richards bridge	2484011	5751224
Styx River at Kainga Road	2485009	5756361
Wilsons Drain at Otukaikino Memorial Reserve	2481259	5752508
Horners Drain at Prestons Road	2480777	5748019

2.2 Sediment Quality Parameters Tested

The samples were tested at the laboratory for a range of different sediment quality parameters, as outlined in Table 2, in accordance with the analysis protocol in the monitoring program. A brief discussion of each parameter is provided in the following paragraphs, with the sources of these contaminants detailed in Table 3. Interim Sediment Quality Guidelines (ISQG) are provided by the Australian and New Zealand guidelines for fresh and marine water quality to assess the effects of contaminated sediment on freshwater biota (ANZECC, 2000). These guidelines include ISQG-low and ISQG-high values. Exceedance of either of these values indicates that more investigation is required to determine the adverse effects of contaminants on aquatic biota. Guideline levels for each parameter are also discussed below.

Metals, in particular, *copper, lead* and *zinc*, can be toxic to aquatic organisms, negatively affecting such things as fecundity, maturation, respiration, physical structure and behaviour (Harding, 2005). The ISQG-low and ISQG-high values for copper, lead and zinc are 65 g/m³ and 270 g/m³, 50 g/m³ and 220 g/m³, and 200 g/m³ and 410 g/m³, respectively.

Sediments that contain high concentrations of organic carbon, measured as *Total Organic Content* (TOC), are more likely to accumulate greater concentrations of organic contaminants, such as polyaromatic hydrocarbons (Golder Associates, 2009). As such, it is important to also detail the concentrations of this parameter to understand the results of the other contaminants. There are no guideline levels for TOC.

Polyaromatic hydrocarbons (PAHs) can also cause toxic and carcinogenic effects on stream biota (Maltby et al., 1995; Kelly, 2010). There are sixteen constituents of PAHs that are analysed by the laboratory that often return results less than the laboratory limit of detection (LOD). Therefore, given the scale of presenting all of these results, Total PAHs are only provided in detail in this report (although laboratory results are provided for all in Appendix A). Total PAHs were calculated by summing the concentrations of all the individual constituents. The ISQG-low and ISQG-high values for Total PAHs are 4 g/m³ and 45 g/m³, respectively. Given the relationship between PAHs and TOC, the ANZECC guidelines state that if TOC content is markedly higher than 1%, the guideline value should be relaxed (i.e. made less stringent), due to additional carbon binding sites reducing the bioavailability of the contaminant (ANZECC, 2000). PAH values should therefore be normalised to 1% TOC before comparison to guidelines (ANZECC, 2000). This was undertaken by dividing PAH values for each site by their respective TOC values, given that TOC was recorded in g/100g.

Particle size distribution details the percentage by weight of particles within different size ranges. This parameter is important to understand to give an indication of the amount of fine sediment present. Sediment can adversely affect aquatic plants, invertebrates and fish (Crowe & Hay, 2004; Ryan, 1991). For example, sediment can affect photosynthesis of plants and therefore primary productivity within streams, interfere with feeding through the smothering of food supply, and can clog suitable habitat for species (Crowe & Hay, 2004; Ryan, 1991). In this study, particles less than 2000 μ m in size were classified into coarse sand (500 – 2000 μ m), medium sand (250 – 500 μ m), fine sand (63 – 250 μ m), and silt and clay (<63 μ m) categories. These

classifications are consistent with the Golder 2009 study and are a modification of the Wentworth Scale (Golder Associated, 2009).

 Table 2. Sediment quality parameters analysed for sites within the Styx Stormwater

 Management Plan area

Parameter	Units of measurement
Total copper	g/m ³ dry weight
Total lead	g/m ³ dry weight
Total zinc	g/m ³ dry weight
Polyaromatic Hydrocarbons (PAHs)	g/m ³ dry weight
Total Organic Content (TOC)	g/100g dry weight
Particle size distribution	-

Table 3. Sources of contaminants in sediment in urban areas (from Golder Associates, 2009)

Contaminant	Sources
Copper	Road runoff - commonly used in brake linings
Lead	Historical contamination – petrol additive Road runoff - used to minor extent in brake linings
Zinc	Road runoff - used in tyres Roof runoff – used in galvanised roof products
PAHs	Combustion - household fires, industrial emissions, rural burn-offs Vehicle emissions - exhaust, oil and grease leaks, tyre wear Road wear – bitumen and tar

2.3 Statistical Analyses

Sediment quality concentrations were compared to that recorded at the same sites during the 1980 Robb study (Robb, 1988) and the Golder Associates 2009 study (Golder Associates, 2009)¹. To allow analysis of concentrations, sediment quality values that were less than the laboratory Limit of Detection (LOD) were converted to half the detection limit (this is also consistent with Golder, 2009, methodology).

Chi-square Goodness-of-Fit tests were conducted to establish whether concentrations varied significantly between years (with levels expected to be the same between years). Overall tests for all years were undertaken, as well as tests between pairs of years (i.e. 1980 versus 2009, 2009 versus 2014 and 2014 versus 1980). Differences were considered to be significant if *P*-values were less than 0.05. A summary of the results of this testing are presented on the graphs within this report, with full test results presented in Appendix B. Particle size distribution between years was not statistically analysed, only visually compared.

¹ PAHs and TOC were not recorded during the 1980 Robb study, and therefore comparisons were unable to be made

3 Results

The laboratory results from all sites are presented in Appendix A and the results of each parameter summarised in the following sections.

3.1 Total Copper

Total copper concentrations in the sediment samples varied between the sites but were all below the lower and upper ISQG values (Figure 1). The exception to this was the Kaputone Creek at Belfast Road site, which recorded a substantially higher value than the other sites (170 mg/kg), which was above the ISQG-low value, but below the ISQGhigh value. This is the first year this ISQG-low value has been exceeded at this site. There were no apparent upstream to downstream trends in concentrations in the Styx River mainstem. The majority of chi-square tests recorded significant differences in levels between years, with concentrations generally increasing sequentially from 1980 (Figure 1 and Appendix B). However, there were four sites were levels did not vary between the sampling periods: Styx River at Redwood Springs, Styx River at the Marshland Road and Richards bridges, and Wilsons Drain.

Figure 1. Total copper levels in sediment samples from the eleven sites within the Styx Stormwater Management Plan area collected during this 2014 survey, compared to levels recorded during the 1980 and 2009 surveys. Sites are ordered from upstream to downstream (left to right). The lower and upper dotted lines represent the ANZECC (2000) ISQG-low (65 g/m³) and ISQG-high (270 g/m³) values, respectively. N/A = Not Applicable, as site not sampled. Boxes indicate statistically significant (< or >) or insignificant differences (=), as determined by the chi-square tests.

3.2 Total Lead

There were variations in the levels of lead recorded in the sediment samples across sites (Figure 2). There was no apparent upstream to downstream trend in concentrations in the mainstem. Three sites recorded values above the ISQG-low value (Styx River at Sawyers arms Road and the two Kaputone Creek sites), but no sites recorded values above the ISQG-high value. These sites also exceeded the ISQG-low value in 2009, but not in 1980. Although lead levels at Horners Drain exceeded the ISQG-low guideline value in 1980 and 2009, this value was not exceeded in this survey. As was the case with copper, the highest value recorded was at the Belfast Road Kaputone Creek site (76 mg/kg). A large proportion of the chi-square tests recorded significant differences in levels between all three years (Figure 2 and Appendix B); concentrations in 1980 were substantially lower than the later two surveys, and 2009 levels were either higher or lower than 2014, depending on the site. However, as was the case with copper, lead levels did not vary between sampling periods at the Styx River at Redwood Springs, Styx River at Marshland Road bridge, Styx River at Richards bridge and Wilsons Drain sites.

Figure 2. Total lead levels in sediment samples from the eleven sites within the Styx Stormwater Management Plan area collected during this 2014 survey, compared to levels recorded during the 1980 and 2009 surveys. Sites are ordered from upstream to downstream (left to right). The lower and upper dotted lines represent the ANZECC (2000) ISQG-low (50 g/m³) and ISQG-high (220 g/m³) values, respectively. N/A = Not Applicable, as site not sampled. Boxes indicate statistically significant (< or >) or insignificant differences (=), as determined by the chi-square tests.

3.3 Total Zinc

Total zinc concentrations in the sediment samples varied between the sites, but concentrations were generally higher in the tributaries than the mainstem (Figure 3). There were no apparent upstream to downstream trends in concentrations in the Styx River mainstem. The ISQG-high value was exceeded at the two Kaputone Creek sites, consistent with that recorded in 2009. Although the Horners Drain site also exceeded this value in 2009, in this survey this site did not even exceed the ISQG-low value. The ISQG-low value was exceeded at Wilsons Drain, but not the ISQG-high value. This site also exceeded the ISQG-low value in 2009 (and was not sampled in 1980). The Kaputone Creek at Belfast Road site again recorded the highest concentration (600 mg/kg). The Kaputone Creek Blakes Road site also recorded a high zinc level of 500 mg/kg. All but the Wilson Drain site recorded significant differences in levels between years, with concentrations between 2009 and 2014 either increasing or decreasing, depending on the site, and both these surveys recording higher levels than the 1980 survey at all sites (Figure 3 and Appendix B).

Figure 3. Total zinc levels in sediment samples from the eleven sites within the Styx Stormwater Management Plan area collected during this 2014 survey, compared to levels recorded during the 1980 and 2009 surveys. Sites are ordered from upstream to downstream (left to right). The lower and upper dotted lines represent the ANZECC (2000) ISQG-low (200 g/m³) and ISQG-high (410 g/m³) values, respectively. N/A = Not Applicable, as site not sampled. Boxes indicate statistically significant (< or >) or insignificant differences (=), as determined by the chi-square tests. Some values were below the laboratory limit of detection of 100 g/m³ – these values were recorded as half this value (50 g/m³) to allow analyses to be undertaken.

3.4 TOC

TOC levels varied across the sites, with no apparent upstream to downstream trend in the mainstem (Figure 4). Consistent with the other parameters, highest levels of organic content were recorded at the Kaputone Creek at Belfast Road site (15 g/100g), at a level similar to that recorded in 2009 (14 g/100g). No guideline levels are available for TOC. There were no significant differences in levels between years at all sites, except for the Styx River at Main North Road site, which recorded significantly higher levels compared to 2009 (Figure 4 and Appendix B).

Figure 4. Total Organic Content (TOC) levels in sediment samples from the eleven sites within the Styx Stormwater Management Plan area collected during this 2014 survey, compared to levels recorded during the 2009 survey. Sites are ordered from upstream to downstream (left to right). N/A = Not Applicable, as site not sampled. Boxes indicate statistically significant (< or >) or insignificant differences (=), as determined by the chi-square tests. No guideline levels are available for this parameter.

3.5 PAHs

There were only a few sites in this survey where PAHs were detected: Styx River at Sawyers Arms Road, Horners Drain, Styx River at Kainga Road and Wilsons Drain (Figure 5). Of these sites, PAHs were not recorded at the Kainga Road site in 2009. In contrast, in 2009, PAHs were detected at the Kaputone Creek at Blakes Road, and the Styx River at Marshland Road and Richards bridges sites, but not in 2014. Neither the ISQG-low or high guideline values were exceeded at any of the sites, consistent with that recorded in 2009. There were also no significant differences in concentrations between the two surveys at any of the sites (Figure 5 and Appendix B).

Figure 5. Total Polyaromatic Hydrocarbon (PAHs) levels in sediment samples from the eleven sites within the Styx Stormwater Management Plan area collected during this 2014 survey, compared to levels recorded during the 2009 survey. Sites are ordered from upstream to downstream (left to right). Values are normalised by 1% TOC (ANZECC, 2000). The dotted line represents the ANZECC (2000) ISQG-low value (4 g/m³). The ISQG-high value (45 g/m³) is not represented on the graph, as the scale does not extend this far. N/D = PAHs Not Detected. No significant differences between years were recorded.

3.6 Particle Size Distribution

Each of the eleven sites recorded sediment <2000 μ m within the four particle sizes of coarse sand, medium sand, fine sand, and silt and clay (Figure 6). The exception to this was Horners Drain, where no coarse sand was recorded. The predominant sediment categories recorded were fine sand, and silt and clay. This is the same as that in the 1980 and 2009 surveys. However, overall there appears to have been a sequential decrease in the amount of fine sand, and silt and clay (and therefore an increase in the amount of coarse and medium sand) at the sites since 1980.

Figure 6. Particle size distribution of sediment collected from eleven sites within the Styx Stormwater Management Plan area during 1980, 2009 and 2014 (this survey). Sites are ordered from upstream to downstream (left to right). N/A = Not Applicable, as site not surveyed.

4 Discussion

Although copper concentrations have mostly increased sequentially through the three surveys in 1980, 2009 and 2014, levels in this study were generally within the guidelines. PAHs were generally not detected in the sediment and when they were concentrations were well below the guidelines. There were no significant changes in PAHs levels between 2009 and 2014. Both these parameters are therefore unlikely to be having adverse effects on biota within the catchment.

Lead concentrations exceeded the ISQG-low levels at some of the sites, but no sites exceeded the ISQG-high level. Lead levels in 2009 and 2014 were significantly higher than that recorded in 1980. Levels also significantly differed at some of the sites between 2009 and 2014, with levels either increasing or decreasing, although some sites did not vary significantly between these two surveys. Zinc concentrations were generally higher in the tributaries than the mainstem, and many sites exceeded both the low and high guideline levels. Again, concentrations in 2009 and 2014 were significantly higher than that recorded in 1980. Levels between 2009 and 2014 were also significantly different, with levels increasing or decreasing between surveys. These two parameters may therefore be having adverse effects on biota in these waterways. This also further confirms that the waterways are being subjected to contaminated input, most likely from stormwater.

With respect to organic content in the waterways, levels varied between sites, but were generally not significantly different between the 2009 and 2014 surveys. Particle size analyses also showed that fine sand, and silt and clay, dominated the stream beds. It appears that the amount of these two substrate categories has declined sequentially through the three surveys, resulting in larger amounts of coarser particles being present at the sites. It seems unlikely this change is due to stream maintenance, as only localised dredging has been undertaken in the Styx River and Kaputone Creek, and none has been carried out in Horners and Wilsons Drains. This change may instead be due to hydrology and natural processes, potentially exacerbated by bed heave due to the earthquakes, resulting in coarser old Waimakariri substrates coming to the surface, and finer substrates washing downstream. Regardless, this is a positive change ecologically, as finer sediment can cause adverse effects on biota, as discussed previously in Section 2.2.

The location that recorded the lowest levels of contaminants in sediment overall was the Styx River site within the Styx Mill Reserve. In contrast, the site that recorded the highest level of contaminants that predominantly exceeded the guideline levels (i.e. for copper, lead and zinc, but not for PAHs) was the Kaputone Creek at Belfast Road site. As discussed in the water quality report, this waterway flows through a predominantly agricultural catchment and has been subject historically to adjacent hazardous land use, including freezing work and wool scour activities. A piggery is also located upstream of the Belfast Road site. These activities may explain the presence of these contaminants in the sediment of this waterway, although they are typically associated with road and roof runoff. Over time, the SMP should address the influence of these activities, by intercepting and treating stormwater discharges, and re-developing the catchment. However, potential discharges as a result of the current piggery may also need to be investigated by Environment Canterbury.

In summary, sediment quality at these Styx SMP sites has variably increased, decreased or not changed significantly since the last survey, depending on the parameter. Lead and zinc levels are still high throughout the catchment and therefore these parameters may be causing adverse effects on biota. It is predicted that contaminant levels in these waterways will reduce over time, once the SMP has been implemented fully. It would be prudent to focus treatment on Kaputone Creek, which has been indentified in this report as the worst site in the catchment.

References

ANZECC (Australian and New Zealand Environment and Conservation Council, ANZECC, and Agriculture and Resource Management Council of Australia and New Zealand, ARMCANZ), 2000. Australian and New Zealand guidelines for fresh and marine water quality. Volume 1: The guidelines. ANZECC & ARMCANZ, Artarmon, New South Wales.

Crowe, A. & Hay, J. 2004. Effects of fine sediment on river biota. Report Number 951, prepared for Motueka Integrated Catchment Management Programme. Cawthron Institute, Nelson.

Golder Associates, 2009. Styx Integrated Catchment Management Plan: Styx River sediment study. Report No. 087813152 prepared for Christchurch City Council. Golder Associates, Christchurch.

Harding, J.S., 2005. Impacts of metals and mining on stream communities, in *Metal Contaminants in New Zealand*, T.A. Moore, A. Black, J.A. Centeno, J.S. Harding & D.A. Trumm (Editors), p. 343-357. Resolutionz press, Christchurch.

Kelly, A. 2010. Ecological impacts from stormwater in the Auckland region: A literature review. Technical Report No. 021, prepared by Coast and Catchment for Auckland Regional Council. Auckland Regional Council, Auckland.

Maltby, L., Boxall, A.B.A., Farrow, D.M., Calow, P. & Betton, C.I. 1995. The effects of motorway runoff on freshwater ecosystems. 2. Identifying major toxicants. *Environmental Toxicology and Chemistry* 14: 1093-1101.

Robb, J. 1988. Heavy metals in the rivers and estuaries of metropolitan Christchurch and outlying areas. Christchurch Drainage Board, 1988.

Ryan, P.A., 1991. Environmental effects of sediment on New Zealand streams: a review. *New Zealand Journal of Marine and Freshwater Research* 25: 207-221.

5 Appendix A: Laboratory Reports

CHRISTCHURCH CITY COUNCIL

LABORATORY CITY WATER & WASTE UNIT

CHRISTCHURCH WASTEWATER TREATIVE IT PLANT • SHUTTLE DRIVE OFF PAGES ROAD PO BOX 73041 • CHRISTCHURCH • NEW ZEALAND • TEL 64-3-941-5711 • FAX 64-3-941-5709

18/03/2014 Belinda Whyte

Greenspace P O Box 237 Christchurch

laborato

Report Number: 140228002 Client Order No:

LABORATORY ANALYSIS REPORT

Lab. No: Sample Name:	Date Sampled: Time Sampled: Date Received: Sampled By:	Sample Description: Parameter Name:	Result:	Units:
1402944	27/02/14	15		
	pm	Sawyers Arms Rd		
	27/02/14	Styx River		
	Paul Woods	Sediment		
		Arsenic Total (*)	<4.0	mg/kg dw
		Copper Total	36	mg/kg dw
		Lead <mark>Tot</mark> al	70	mg/kg dw
		Zinc Total	150	mg/kg dw
		Total Organic Carbon (S) (*)	See Hill rpt 1242970	g.m-3
		Semi-Volatile Organic Compounds (SVO	See Hill rpt 1242970	mg/kg
		Polycyclic Aromatic Hydrocarbons - Soil	See Hill rpt 1242970	mg/kg d wt
1402946	27/02/14	2		
		Upstream Husseys Rd		
	27/02/14	Smacks Creek		
	Paul Woods	Sediment		
		Sample Taken	Not taken	
1402947	27/02/14	3		
		Conservation Reserve		
	27/02/14	Styx River		
	Paul Woods	Sediment		
		Copper Total	12	mg/kg dw
		Lead Total	11	mg/kg dw
		Zinc Total	<100	mg/kg dw
		Total Organic Carbon (S) (*)	See Hill rpt 1242970	g.m-3

been performed in accordance with its terms of accreditation, with the exception of tests marked ", which are not accredited. DDE 03 941 5702

City Water and Waste Laboratory

Page 1 of 5

Lab. No: Sample Name:	Date Sampled: Time Sampled: Date Received: Sampled By:	Sample Description: Parameter Name:	Result:	Units:
		Polycyclic Aromatic Hydrocarbons - Soil	See Hill rpt 1242970	mg/kg d wt
1402948	27/02/14	4		
		Main North Road		
	27/02/14	Styx River		
	Paul Woods	Sediment.		
		Arsenic Total (*)	10	mg/kg dw
		Copper Total	70	mg/kg dw
		Lead Total	12	mg/kg dw
		Zinc Total	<100	mg/kg dw
		Total Organic Carbon (S) (*)	See Hill rpt 1242970	g.m-3
		Semi-Volatile Organic Compounds (SVC	See Hill rpt 1242970	mg/kg
		Polycyclic Aromatic Hydrocarbons - Soil	See Hill rpt 1242970	mg/kg d wt
1402949	27/02/14	5		
		Redwood Springs		
	27/02/14	Styx River		
	Paul Woods	Sediment		
		Copper Total	16	mg/kg dw
		Lead Total	21	mg/kg dw
		Zinc Total	150	mg/kg dw
		Total Organic Carbon (S) (*)	See Hill rpt 1242970	g.m-3
		Polycyclic Aromatic Hydrocarbons - Soil	See Hill rpt 1242970	mg/kg d wt
1402950	27/02/14	6 Distance Danat		
	27/02/14	Blakes Road Kaputone Stream		
	Paul Woods	Sediment		
	1 441 110043	Arsenic Total (*)	16	mg/kg dw
		Copper Total	59	mg/kg dw
		Lead Total	53	mg/kg dw
		Zinc Total	500	mg/kg dw
		Total Organic Carbon (S) (*)	See Hill rpt 1242970	g.m-3
		Semi-Volatile Organic Compounds (SVO	See Hill rpt 1242970	mg/kg
		Polycyclic Aromatic Hydrocarbons - Soil	See Hill rpt 1242970	mg/kg d wt

This Laboratory is accredited by international Accreditation New Zealand. The reported tests have been performed in accordance with this terms of accreditation, with the exception of tests marked *, which are not accredited.

Contact: Paul Woods DDI: 03 941 5702

City Water and Waste Laboratory

Page 2 of 5

	Date Received: Sampled By:			
1402951	27/02/14	7 Belfast Road East		
	27/02/14 Paul Woods	Kaputone Stream Sediment		
		Copper Total	170	mg/kg dw
		Lead Total	76	mg/kg dw
		Zinc Total	600	mg/kg dw
		Total Organic Carbon (S) (*)	See Hill rpt 1242970	g.m-3
		Polycyclic Aromatic Hydrocarbons - So	il See Hill rpt 1242970	mg/kg d wt
1402952	27/02/14	8 Marshlands Road Styx River		
	Paul Woods	Sediment	10	and the star
		Arsenic Total (*)		mg/kg dw
		Copper Total	9.8	mg/kg dw
		Lead Total	13	mg/kg dw
		Zinc Total	<100	mg/kg dw
		Total Organic Carbon (S) (*)	See Hill rpt 1242970	g.m-3
		Semi-Volatile Organic Compounds (SV	C See Hill rpt 1242970	mg/kg
		Polycyclic Aromatic Hydrocarbons - So	il See Hill rpt 1242970	mg/kg d wt
1402953	27/02/14 27/02/14 Paul Woods	9 Richards Bridge Styx River Sediment		
		Copper Total	18	mg/kg dw
		Lead Total	25	mg/kg dw
		Zinc Total	180	mg/kg dw
		Total Organic Carbon (S) (*)	See Hill rpt 1242970	g.m-3
		Polycyclic Aromatic Hydrocarbons - So	il See Hill rpt 1242970	mg/kg d wt
1402954	27/02/14	10 Kainga Road		
	27/02/14 Paul Woods	Styx River Sediment		
		Arsenic Total (*)	8.1	mg/kg dw
		Copper Total	17	mg/kg dw
788 817 770 9	Accreditation New Ze been performed in ac	aland. The reported tests have cordance with its terms of e exception of tests marked ",	Contact: Paul Woods DDI: 03 941 5702	

City Water and Waste Laboratory

Page 3 of 5

Sample Name:	Date Sampled: Time Sampled: Date Received: Sampled By:	Sample Description: Parameter Name:	Result:	Units:
		Lead Total	22	mg/kg dw
		Zinc Total	100	mg/kg dw
		Total Organic Carbon (S) (*)	See Hill rpt 1242970	g.m-3
		Semi-Volatile Organic Compounds (SVO	See Hill rpt 1242970	mg/kg
		Polycyclic Aromatic Hydrocarbons - Soil	See Hill rpt 1242970	mg/kg d wt
1402955	27/02/14	11 Otukaikino Memorial		
	27/02/14	Wilson's Drain		
	Paul Woods	Sediment		
	////378/2097512	Arsenic Total (*)	16	mg/kg dw
		Copper Total	36	mg/kg dw
		Lead Total	47	mg/kg dw
		Zinc Total	340	mg/kg dw
		Total Organic Carbon (S) (*)	See Hill rpt 1242970	g.m-3
		Semi-Volatile Organic Compounds (SVO	See Hill rpt 1242970	mg/kg
		Polycyclic Aromatic Hydrocarbons - Soil	See Hill rpt 1242970	mg/kg d wt
1402956	27/02/14	12 Prestons Road		
	27/20/14	Homers Drain		
	27/02/14 Paul Woods	Sediment		
		Copper Total	22	mg/kg dw
		Lead Total	14	mg/kg dw
		Zinc Total	<100	mg/kg dw
		Total Organic Carbon (S) (*)	See Hill rpt 1242970	g.m-3
		Polycyclic Aromatic Hydrocarbons - Soil	See Hill rpt 1242970	mg/kg d wt

(S) = Subcontracted enalysis (*) = Not IANZ accredited for this test. e=Estimated No. CFUr100mL Method Arsenic Total (") USEPA 200.2 USEPA 200.2

Copper Total

This Laboratory is accredited by international Accreditation New Jealand. The reported feats have been performed in accordance with its terms of accreditation, with the exception of tests marked ", which are not accredited.

Contact: Paul Woods DDE 03 941 5702

City Water and Waste Laboratory

Page 4 of 5

 b. No: mple Name:	Date Sa Time Sa Date Re Sampleo	mpled: ceived:	Sample Description:	Parameter Name	e: Ri	esult:	Units:
		Method					
Lead Total		USEPA 200.2					
Polycyclic Aromatic Hyd	lrocarb	APHA 6410B (mo	dified)				
Sample Taken							
Semi-Volatile Organic Co	ompoun	See Sub-contract	ed report				
Total Organic Carbon (S))(")	APHA 5310B					
Zinc Total		USEPA 200.2					

Comments:

Bur

Belinda Wilson Senior Technician (H Con)

Paul Woods Chemistry Team Leader

This report must not be reproduced, except in full, without written consent.

This Laboratory is accredited by international Accreditation New Zealand. The reported tests have been performed in accordance with its terms of accreditation, with the exception of tests marked ", which are not accredited.

Contact: Paul Woods DDI: 03 941 5702

City Water and Waste Laboratory

Page 5 of 5

R J Hill Lakoratories Limited 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand

Tel +64 7 858 2000 Fax +64 7 858 2001 Email mail@hill-labs.co.nz Web www.hill-labs.co.nz

1 of 6

ANALY	SIS	REP	ORT			Page 1 of 6
	rch City Cound nd Waste Labo		Dat Dat Qu Orc Clie	o No: te Registered: te Reported: ote No: der No: ent Reference:	1242970 04-Mar-2014 14-Mar-2014 4500364890	SPv1
			Su	bmitted By:	Anna Munro	
Sample Type: Sediment						
s	Sample Name:	1402944 27-Feb-2014	1402947 27-Feb-2014	1402948 27-Feb-2014	1402949 27-Feb-2014	1402950 27-Feb-2014
	Lab Number:	1242970.1	1242970.2	1242970.3	1242970.4	1242970.5
Individual Tests						
Dry Matter	g/100g as rovd	40	55	18.6	28	22
Particle size analysis*		See attached report	See attached report	See attached report	See attached report	See attached report
Total Organic Carbon*	g/100g dry wt	3.4	1.67	7.5	4.6	9.0
Polycyclic Aromatic Hydrocarb	ons Screening in S	oil				
Acenaphthene	mg/kg dry wt	< 0.08	< 0.04	< 0.12	< 0.08	< 0.10
Acenaphthylene	mg/kg dry wt	< 0.06	< 0.04	< 0.12	< 0.08	< 0.10
Anthracene	mg/kg dry wt	< 0.06	< 0.04	< 0.12	< 0.08	< 0.10
Benzo[a]anthracene	mg/kg dry wt	0.07	< 0.04	< 0.12	< 0.08	< 0.10
Benzo[a]pyrene (BAP)	mg/kg dry wt	0.06	< 0.04	< 0.12	< 0.08	< 0.10
Benzo(b)fluoranthene + Benzo(j fluoranthene	j] mg/kg dry wt	0.07	< 0.04	< 0.12	< 0.08	< 0.10
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.08	< 0.04	< 0.12	< 0.08	< 0.10
Benzo[k]fluoranthene	mg/kg dry wt	< 0.08	< 0.04	< 0.12	< 0.08	< 0.10
Chrysene	mg/kg dry wt	0.06	< 0.04	< 0.12	< 0.08	< 0.10
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.08	< 0.04	< 0.12	< 0.08	< 0.10
Fluoranthene	mg/kg dry wt	0.14	< 0.04	< 0.12	< 0.08	< 0.10
Fluorene	mg/kg dry wt	< 0.08	< 0.04	< 0.12	< 0.08	< 0.10
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.06	< 0.04	< 0.12	< 0.08	< 0.10
Naphthalene	mg/kg dry wt	< 0.3	< 0.2	< 0.6	< 0.4	< 0.5
Phenanthrene	mg/kg dry wt	0.12	< 0.04	< 0.12	< 0.08	< 0.10
Pyrene	mg/kg dry wt	0.15	< 0.04	< 0.12	< 0.08	< 0.10
Haloethers in SVOC Soil Samp	oles by GC-MS					
Bis(2-chloroethoxy) methane	mg/kg dry wt	< 6	-	< 13	-	< 11
Bis(2-chloroethyl)ether	mg/kg dry wt	< 6	-	< 13	-	< 11
Bis(2-chloroisopropyl)ether	mg/kg dry wt	<6	-	< 13	-	< 11
4-Bromophenyl phenyl ether	mg/kg dry wt	< 6	-	< 13	-	< 11
4-Chlorophenyl phenyl ether	mg/kg dry wt	< 6	-	< 13	-	< 11
Nitrogen containing compound	s in SVOC Soil Sa	imples by GC-MS				
3,3'-Dichlorobenzidine	mg/kg dry wt	< 30	-	< 70	-	< 60
2,4-Dinitrotoluene	mg/kg dry wt	< 12	-	< 30	-	< 30
2.6 Dinitrateluone	mailes devet	< 12		< 20		< 20

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked ", which are not accredited.

-

-

-

-

< 30

< 13

< 30

< 30

< 13

< 13

-

-

-

-

2,6-Dinitrotoluene

N-Nitrosodi-n-propylamine

N-Nitrosodiphenylamine

Nitrobenzene

Aldrin

alpha-BHC

mg/kg dry wt

Organochlorine Pesticides in SVOC Soil Samples by GC-MS

< 12

<6

< 12

< 12

<6

<6

< 30

< 11

< 30

< 30

< 11

< 11

Sample Type: Sediment	I					
s	ample Name:	1402944 27-Feb-2014	1402947 27-Feb-2014	1402948 27-Feb-2014	1402949 27-Feb-2014	1402950 27-Feb-2014
	Lab Number:	27-Feb-2014 1242970.1	2/-Feb-2014 1242970.2	27-Feb-2014 1242970.3	27-Feb-2014 1242970.4	27-Feb-2014 1242970.5
Organochlorine Pesticides in S			1212070.2	1212070.0	1212070.1	1212070.0
beta-BHC	mg/kg dry wt	< 6		< 13		< 11
delta-BHC		< 6	-	< 13	-	<11
	mg/kg dry wt	< 6	-	< 13	-	<11
gamma-BHC (Lindane)	mg/kg dry wt	-	-		-	
4,4'-DDD	mg/kg dry wt	<6	-	< 13	-	< 11
4,4'-DDE	mg/kg dry wt	< 6	-	< 13	-	< 11
4,4'-DDT	mg/kg dry wt	< 12	-	< 30	-	< 30
Dieldrin	mg/kg dry wt	< 6	-	< 13	-	< 11
Endosulfan I	mg/kg dry wt	< 12	-	< 30	-	< 30
Endosulfan II	mg/kg dry wt	< 12	-	< 30	-	< 30
Endosulfan sulphate	mg/kg dry wt	< 12	-	< 30	-	< 30
Endrin	mg/kg dry wt	< 12	-	< 30	-	< 30
Endrin ketone	mg/kg dry wt	< 12	-	< 30	-	< 30
Heptachlor	mg/kg dry wt	< 6	-	< 13	-	< 11
Heptachlor epoxide	mg/kg dry wt	< 6	-	< 13	-	< 11
Hexachlorobenzene	mg/kg dry wt	< 6	-	< 13	-	< 11
Polycyclic Aromatic Hydrocarbo	ns in SVOC Soil	Samples by GC-MS			-	
Acenaphthene	mg/kg dry wt	<3	-	<7	-	< 6
Acenaphthylene	mg/kg dry wt	< 3	-	<7	-	< 6
Anthracene	mg/kg dry wt	< 3	-	<7	-	< 6
Benzo[a]anthracene	mg/kg dry wt	< 3	-	<7	-	< 6
Benzo(a)pyrene (BAP)	mg/kg dry wt	< 6	-	< 13	-	< 11
Benzolb)fluoranthene + Benzoli)		< 6	-	< 13	-	<11
luoranthene			-		-	
Benzo[g,h,i]perylene	mg/kg dry wt	< 6	-	< 13	-	< 11
Benzo[k]fluoranthene	mg/kg dry wt	< 6	-	< 13	-	< 11
2-Chloronaphthalene	mg/kg dry wt	< 3	-	<7	-	< 6
Chrysene	mg/kg dry wt	< 3	-	<7	-	< 6
Dibenzo[a,h]anthracene	mg/kg dry wt	< 6	-	< 13	-	< 11
Fluoranthene	mg/kg dry wt	< 3	-	<7	-	< 6
Fluorene	mg/kg dry wt	< 3	-	<7	-	< 6
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 6	-	< 13	-	< 11
2-Methylnaphthalene	mg/kg dry wt	< 3	-	<7	-	< 6
Naphthalene	mg/kg dry wt	< 3	-	<7	-	< 6
Phenanthrene	mg/kg dry wt	< 3	-	<7	-	< 6
Pyrene	mg/kg dry wt	< 3	-	<7	-	< 6
Phenols in SVOC Soil Samples						
4-Chloro-3-methylphenol	mg/kg dry wt	< 12	-	< 30	-	< 30
2-Chlorophenol	mg/kg dry wt	< 6	-	< 13	-	< 11
2-Chiorophenol 2,4-Dichlorophenol	mg/kg dry wt mg/kg dry wt	< 6	-	< 13	-	<11
2,4-Dichiorophenol		< 6	-	< 13	-	<11
	mg/kg dry wt					
3 & 4-Methylphenol (m- + p- cresol)	mg/kg dry wt	< 12	-	< 30	-	< 30
2-Methylphenol (o-Cresol)	mg/kg dry wt	< 6	-	< 13	-	< 11
2-Nitrophenol	mg/kg dry wt	< 12	-	< 30	-	< 30
Pentachlorophenol (PCP)	mg/kg dry wt	< 120	-	< 300	-	< 300
Phenol	mg/kg dry wt	< 12	-	< 30	-	< 30
2,4,5-Trichlorophenol	mg/kg dry wt	< 12	-	< 30	-	< 30
2.4.6-Trichlorophenol	mg/kg dry wt	< 12	-	< 30	-	< 30
Plasticisers in SVOC Soil Sam		- 12	_	- 00	_	- 00
	-	< 30	1	< 60	1	< 50
Bis(2-ethylhexyl)phthalate	mg/kg dry wt		-		-	
Butylbenzylphthalate	mg/kg dry wt	< 12	-	< 30	-	< 30
Di(2-ethylhexyl)adipate	mg/kg dry wt	< 6	-	< 13	-	< 11
Diethylphthalate	mg/kg dry wt	< 12	-	< 30	-	< 30
Dimethylphthalate	mg/kg dry wt	< 12	-	< 30	-	< 30
Di-n-butylphthalate	mg/kg dry wt	< 12	-	< 30	-	< 30

Lab No: 1242970 v 1

Hill Laboratories

Page 2 of 6

1 21						
S	ample Name:	1402944	1402947	1402948	1402949	1402950
		27-Feb-2014 1242970.1	27-Feb-2014 1242970.2	27-Feb-2014 1242970.3	27-Feb-2014 1242970.4	27-Feb-2014 1242970.5
Plasticisers in SVOC Soil Samp	Lab Number:	1242870.1	12428/0.2	1242870.5	1242870.4	1242870.0
Di-n-octylphthalate	-	< 12		< 30		< 30
	mg/kg dry wt		-	< 30	-	< 30
Other Halogenated compounds		+				
1,2-Dichlorobenzene	mg/kg dry wt	< 12	-	< 30	-	< 30
1,3-Dichlorobenzene	mg/kg dry wt	< 12	-	< 30	-	< 30
1,4-Dichlorobenzene	mg/kg dry wt	< 12	-	< 30	-	< 30
Hexachlorobutadiene	mg/kg dry wt	< 12	-	< 30	-	< 30
Hexachlorocyclopentadiene	mg/kg dry wt	< 30	-	< 70	-	< 60
Hexachloroethane	mg/kg dry wt	< 12	-	< 30	-	< 30
1,2,4-Trichlorobenzene	mg/kg dry wt	< 6	-	< 13	-	< 11
Other compounds in SVOC Soil	Samples by GC-					
Benzyl alcohol	mg/kg dry wt	< 60	-	< 130	-	< 110
Carbazole	mg/kg dry wt	< 6	-	< 13	-	< 11
Dibenzofuran	mg/kg dry wt	< 6	-	< 13	-	< 11
Isophorone	mg/kg dry wt	< 6	-	< 13	-	< 11
	ample Name:	1402951 27-Feb-2014	1402952 27-Feb-2014	1402953 27-Feb-2014	1402954 27-Feb-2014	1402955 27-Feb-2014
	Lab Number:	1242970.6	1242970.7	1242970.8	1242970.9	1242970.10
Individual Tests				-	-	
Dry Matter	g/100g as rovd	14.3	34	39	64	34
Particle size analysis*		See attached report	See attached report	See attached report	See attached report	See attached report
Total Organic Carbon*	g/100g dry wt	14.5	4.1	4.6	1.22	6.4
Polycyclic Aromatic Hydrocarbo						
Acenaphthene	mg/kg dry wt	< 0.16	< 0.07	< 0.08	< 0.04	< 0.07
Acenaphthylene	mg/kg dry wt	< 0.16	< 0.07	< 0.06	< 0.04	< 0.07
Anthracene	mg/kg dry wt	< 0.16	< 0.07	< 0.08	< 0.04	0.10
Benzo[a]anthracene	mg/kg dry wt	< 0.16	< 0.07	< 0.06	< 0.04	0.24
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.16	< 0.07	< 0.06	< 0.04	0.25
Benzo[b]fluoranthene + Benzo[j] fluoranthene		< 0.16	< 0.07	< 0.06	< 0.04	0.25
Benzo(g,h,i)perylene	mg/kg dry wt	< 0.16	< 0.07	< 0.06	< 0.04	0.15
Benzo[k]fluoranthene	mg/kg dry wt	< 0.16	< 0.07	< 0.06	< 0.04	0.13
Chrysene	mg/kg dry wt	< 0.16	< 0.07	< 0.06	< 0.04	0.23
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.16	< 0.07	< 0.06	< 0.04	< 0.07
Fluoranthene	mg/kg dry wt	< 0.16	< 0.07	< 0.06	0.04	0.52
Fluorene	mg/kg dry wt	< 0.16	< 0.07	< 0.06	< 0.04	0.07
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.16	< 0.07	< 0.06	< 0.04	0.16
Naphthalene	mg/kg dry wt	< 0.8	< 0.4	< 0.3	< 0.18	< 0.4
Phenanthrene	mg/kg dry wt	< 0.16	< 0.07	< 0.08	0.05	0.46
Pyrene	mg/kg dry wt	< 0.16	< 0.07	< 0.06	0.05	0.53
Haloethers in SVOC Soil Sampl	es by GC-MS					
Bis(2-chloroethoxy) methane	mg/kg dry wt	-	<4	-	< 1.9	< 8
Bis(2-chloroethyl)ether	mg/kg dry wt	-	<4	-	< 1.9	< 8
Bis(2-chloroisopropyl)ether	mg/kg dry wt	-	<4	-	< 1.9	< 8
4-Bromophenyl phenyl ether	mg/kg dry wt	-	<4	-	< 1.9	< 8
4-Chlorophenyl phenyl ether	mg/kg dry wt	-	<4	-	< 1.9	< 8
Nitrogen containing compounds	in SVOC Soil Sa	mples by GC-MS				
3,3'-Dichlorobenzidine	mg/kg dry wt	-	< 18	-	< 10	< 40
2,4-Dinitrotoluene	mg/kg dry wt	-	< 8	-	< 4	< 15
2,6-Dinitrotoluene	mg/kg dry wt	-	< 8	-	<4	< 15
Nitrobenzene	mg/kg dry wt	-	<4	-	< 1.9	< 8
N-Nitrosodi-n-propylamine	mg/kg dry wt	-	< 8	-	<4	< 15
N-Nitrosodiphenylamine	mg/kg dry wt	-	< 8	-	<4	< 15
Organochlorine Pesticides in SV	/OC Soil Samples	by GC-MS				
	-					
Aldrin	mg/kg dry wt	-	<4	-	< 1.9	< 8

Sample Type: Sediment		1402951	1402952	1402953	1402954	1402955
Sar	mple Name:	27-Feb-2014	27-Feb-2014	27-Feb-2014	27-Feb-2014	27-Feb-2014
1	ab Number:	1242970.6	1242970.7	1242970.8	1242970.9	1242970.10
Organochlorine Pesticides in SVC		by GC-MS				
alpha-BHC	mg/kg dry wt		<4	-	< 1.9	< 8
beta-BHC	mg/kg dry wt		<4		< 1.9	< 8
delta-BHC	mg/kg dry wt		<4		< 1.9	< 8
gamma-BHC (Lindane)	mg/kg dry wt	-	<4	-	< 1.9	< 8
4,4'-DDD	mg/kg dry wt	-	<4	-	< 1.9	< 8
4,4-DDE	mg/kg dry wt	-	<4	-	< 1.9	<8
4,4-DDE 4,4-DDT		-	<8	-	<4	< 15
	mg/kg dry wt	-	-	-	<1.9	< 10
Dieldrin Factors March	mg/kg dry wt	-	< 4	-	< 1.9	< 15
Endosulfan I	mg/kg dry wt	-	-	-	<4	
Endosulfan II	mg/kg dry wt	-	< 8	-		< 15
Endosulfan sulphate	mg/kg dry wt	-	< 8	-	<4	< 15
Endrin	mg/kg dry wt	-	< 8	-	<4	< 15
Endrin ketone	mg/kg dry wt	-	< 8	-	<4	< 15
Heptachlor	mg/kg dry wt	-	<4	-	< 1.9	< 8
Heptachlor epoxide	mg/kg dry wt	-	<4	-	< 1.9	< 8
Hexachlorobenzene	mg/kg dry wt	-	<4	-	< 1.9	< 8
Polycyclic Aromatic Hydrocarbons	s in SVOC Soil 3	Samples by GC-MS				
Acenaphthene	mg/kg dry wt	-	< 1.8	-	< 1.0	<4
Acenaphthylene	mg/kg dry wt	-	< 1.8	-	< 1.0	<4
Anthracene	mg/kg dry wt	-	< 1.8	-	< 1.0	<4
Benzo(a)anthracene	mg/kg dry wt	-	< 1.8	-	< 1.0	<4
Benzo(a)pyrene (BAP)	mg/kg dry wt	-	<4	-	< 1.9	< 8
Benzolbifluoranthene + Benzoli	mg/kg dry wt		<4	-	< 1.9	< 8
fluoranthene						
Benzo[g,h,i]perylene	mg/kg dry wt	-	<4	-	< 1.9	< 8
Benzo[k]fluoranthene	mg/kg dry wt	-	<4	-	< 1.9	< 8
2-Chloronaphthalene	mg/kg dry wt	-	< 1.8	-	< 1.0	<4
Chrysene	mg/kg dry wt	-	< 1.8	-	< 1.0	<4
Dibenzo(a,h]anthracene	mg/kg dry wt	-	<4	-	< 1.9	< 8
Fluoranthene	mg/kg dry wt	-	< 1.8	-	< 1.0	<4
Fluorene	mg/kg dry wt	-	< 1.8	-	< 1.0	<4
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	-	<4	-	< 1.9	< 8
2-Methylnaphthalene	mg/kg dry wt		< 1.8		< 1.0	<4
Naphthalene	mg/kg dry wt	-	< 1.8	-	< 1.0	<4
Phenanthrene	mg/kg dry wt	-	< 1.8	-	< 1.0	<4
Pyrene	mg/kg dry wt		< 1.8	-	< 1.0	<4
		-	\$ 1.0	-	\$ 1.0	14
Phenols in SVOC Soil Samples b						
4-Chloro-3-methylphenol	mg/kg dry wt	-	< 8	-	< 5	< 15
2-Chlorophenol	mg/kg dry wt	-	< 4	-	< 1.9	< 8
2,4-Dichlorophenol	mg/kg dry wt	-	<4	-	< 1.9	< 8
2,4-Dimethylphenol	mg/kg dry wt	-	<4	-	<3	< 8
3 & 4-Methylphenol (m- + p-	mg/kg dry wt	-	< 8	-	<4	< 15
cresol) 2 Mathulahanal (a Casad)	malks down				<10	- 0
2-Methylphenol (o-Cresol)	mg/kg dry wt	-	< 4	-	< 1.9	< 8
2-Nitrophenol	mg/kg dry wt	-	< 8	-	< 5	< 15
Pentachlorophenol (PCP)	mg/kg dry wt	-	< 80	-	< 40	< 150
Phenol	mg/kg dry wt	-	< 8	-	< 4	< 15
2,4,5-Trichlorophenol	mg/kg dry wt	-	< 8	-	<4	< 15
2,4,6-Trichlorophenol	mg/kg dry wt	-	< 8	-	<4	< 15
Plasticisers in SVOC Soil Sample	es by GC-MS					
Bis(2-ethylhexyl)phthalate	mg/kg dry wt	-	< 15	-	< 8	< 30
Butylbenzylphthalate	mg/kg dry wt	-	< 8	-	<4	< 15
a support a provide state of the state of th						
Di(2-ethylhexyl)adipate	mg/kg dry wt	-	< 4	-	< 1.9	< 8
	mg/kg dry wt mg/kg dry wt	-	< 4	-	< 1.9	< 15

Lab No: 1242970 v 1

Page 4 of 6

Sample Type: Sedime	ent					
	Sample Name:	1402951	1402952	1402953	1402954	1402955
		27-Feb-2014	27-Feb-2014	27-Feb-2014	27-Feb-2014	27-Feb-2014
	Lab Number:	1242970.6	1242970.7	1242970.8	1242970.9	1242970.10
Plasticisers in SVOC Soil S			-			
Di-n-butylphthalate	mg/kg dry wt	-	< 8	-	<4	< 15
Di-n-octylphthalate	mg/kg dry wt	-	< 8	-	<4	< 15
Other Halogenated compou		mples by GC-MS				
1,2-Dichlorobenzene	mg/kg dry wt	-	< 8	-	<4	< 15
1,3-Dichlorobenzene	mg/kg dry wt	-	< 8	-	<4	< 15
1,4-Dichlorobenzene	mg/kg dry wt	-	< 8	-	<4	< 15
Hexachlorobutadiene	mg/kg dry wt	-	< 8	-	<4	< 15
Hexachlorocyclopentadiene	mg/kg dry wt	-	< 18	-	< 10	< 40
Hexachloroethane	mg/kg dry wt	-	< 8	-	<4	< 15
1,2,4-Trichlorobenzene	mg/kg dry wt	-	<4	-	< 1.9	< 8
Other compounds in SVOC	Soil Samples by GC	MS				
Benzyl alcohol	mg/kg dry wt	-	< 40	-	< 19	< 80
Carbazole	mg/kg dry wt	-	<4	-	< 1.9	< 8
Dibenzofuran	mg/kg dry wt	-	< 4	-	< 1.9	< 8
Isophorone	mg/kg dry wt	-	<4	-	< 1.9	< 8
	Sample Name:	1402956 27-Feb-2014				
	Lab Number:	1242970.11				
Individual Tests						
Dry Matter	g/100g as rovd	73	-	-	-	-
Particle size analysis*		See attached report	-	-	-	-
Total Organic Carbon*	g/100g dry wt	0.53	-	-	-	-
Polycyclic Aromatic Hydroc	arbons Screening in S	ioil				
Acenaphthene	mg/kg dry wt	< 0.04	-	-	-	-
Acenaphthylene	mg/kg dry wt	< 0.04	-	-	-	-
Anthracene	mg/kg dry wt	< 0.04	-	-	-	-
Benzo(a)anthracene	mg/kg dry wt	< 0.04	-	-	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.04	-	-	-	-
Benzo(b)fluoranthene + Ben fluoranthene	zo[j] mg/kg dry wt	< 0.04	-	-	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.04	-	-	-	-
Benzo[k]fluoranthene	mg/kg dry wt	< 0.04	-	-	-	-
Chrysene	mg/kg dry wt	< 0.04	-	-	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.04	-	-	-	-
Fluoranthene	mg/kg dry wt	0.05	-	-	-	-
Fluorene	mg/kg dry wt	< 0.04	-	-	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.04	-	-	-	-
Naphthalene	mg/kg dry wt	< 0.16	-	-	-	-
reprintent in			-	-	-	-
Phenanthrene	mg/kg dry wt	0.04	-	-	-	-

Analyst's Comments

Appendix No.1 - Particle Size Analysis Report

SUMMARY OF METHODS The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Sediment			
Test	Method Description	Default Detection Limit	Sample No
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-11
Polycyclic Aromatic Hydrocarbons Screening in Soil	Sonication extraction, Dilution or SPE cleanup (if required), GC- MS SIM analysis (modified US EPA 8270). Tested on as received sample. [KBIs:5786,2805,2805]	0.010 - 0.05 mg/kg dry wt	1-11

Lab No: 1242970 v 1

Page 5 of 6

Sample Type: Sediment						
Test	Method Description	Default Detection Limit	Sample No			
Semivolatile Organic Compounds Screening in Soil by GC-MS	Sonication extraction, GPC cleanup (if required), GC-MS FS analysis. Tested on as received sample	0.3 - 30 mg/kg dry wt	1, 3, 5, 7, 9-10			
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. US EPA 3550. (Free water removed before analysis).	0.10 g/100g as rovd	1-11			
Particle size analysis*	Malvern Laser Sizer particle size analysis. Subcontracted to Earth Sciences Department, Waikato University, Hamilton.	-	1-11			
Total Organic Carbon*	Acid pretreatment to remove carbonates if present, neutralisation, Elementar Combustion Analyser.	0.05 g/100g dry wt	1-11			

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Martin Cowell - BSc Client Services Manager - Environmental Division

Result Analysis Report

Sample N 1242970/			SOP Name: Marine Sediment				Measured: Thursday, 6 M	March 2014 2:	32:10 p.m	53	
Sample S	Source & ty	pe:	Me asu rodger	ured by: rs			Analysed: Thursday, 6 M	March 2014 2:	32:11 p.m		
Sample b 2014035/	bulk lot ref: 1			it Source: urement							
Particle Marine Se				sory Name: 2000G (A)			Analysis mo General purp			Sensitivity Enhanced	r.
Particle I	RI:			rption:			Size range:			Obscurat	
1.500 Disparsa	nt Name:		0.2 Diene	rsant RI:			0.020 Weighted Re	to 2000,000	um	14.61 %	
Water	in ranne.		1.330					%		Result Emulation: Off	
Concentr 0.0709	ration: %Vol		Span 4.938				Uniformity: 1.42			Result units: Volume	
Specific 9 0.197	Surface Are m?g	a:	Surfac 30.522		Mean D[3,2]:			ed Mean D[4 um	3]:	Standard D 362.013 um	
d(0.1):	17.369	um		d	0.5): 160.354	um			d(0.9):	809.149	um
d(0.1):	17.369	um		1172	0.5): 160.354 Particle Size Dist	2 1 772		1 1 1 1 1	d(0.9):	809.149	um
d(0.1):	5	um		1172	00/00 - 00/00/00/00	2 1 772	/		d(0.9):	809.149	um
2	5	um		1172	00/00 - 00/00/00/00	2 1 772		$\overline{\mathbf{A}}$	d(0.9):	809.149	um
	5			1172	00/00 - 00/00/00/00	2 1 772		\mathbf{i}	d(0.9):	809.149	
2	5 (%) 3 3			1172	00/00 - 00/00/00/00	2 1 772			d(0.9):	809.149	
2	5 4 3 2 1			1172	00/00 - 00/00/00/00	2 1 772			d(0.9):	809.149	
2	5 4 3 2 1	um	0.1	1172	'article Size Dis	tribution	100			809.149	
2	5 (%) 3 2 1 8	.01	15350		'article Size Dist	tribution					
2	5 (%) 3 3 2 1 8. -1242970	.01	0.1 Size (um) Vol Um	P 1 2014 2:32:1	Particle Size Dist	tribution	100	Size (um) 193	1000 3		
2	5 (%) aumo 2 1 <u>1242970</u> <u>Size sam</u> 2.000	.01 //1, Thurse //1, Thurse //1, Thurse	day, 6 March 2	P 1 2014 2:32:1 048 37. 37.	Particle Size Dist	tribution 10 100 (μm) 5120 μm	100	Size (µm) Vo 300.000	1000 3	0000	ol Under 7 90.50
2	5 (%) au 3 (%) 3 (%) 3 2 1 8 .000 100 100 100 100 100 100 100	.01	day, 6 March 2 (Stre (um) Vel Uno 0.900 2.000 3.900	P 1 2014 2:32:1 dar % 0.48 37. 0.49 0.49 37. 0.49 53.	2article Size Dist	tribution 10 (µm)	100 100 100	Size (µm) Vo 300.000 350.000 420.000	1000 3	Size (µm) V 840.000 1000.000 1180.000	ol Under? 90.50 95.52
2	5 (%) 3 3 2 1 8 -1242970 2.000 2.000 2.000 2.000 2.000 2.000	.01	day, 6 March 2 (Size (um) Vel Uni 0.980 2.000	P 1 2014 2:32:1 der % Sro 0.48 0.87 4.47 53	iarticle Size Dist	tribution 100 (μm)	100	Size (µm) Ve 300.000 350.000	1000 3	0000	

Operator notes:

Malvem Instruments Ltd. Malvern, UK Tel := +[44] (0) 1684-892456 Fax +[44] (0) 1684-892789

Mastersizer 2000 Ver. 5.60 Serial Number : MAL102144

File name: Hill Record Number: 1816 6/03/2014 5:05:19 p.m.

Result Analysis Report

Sample Name: 1242970/2	SOP Name: Marine Sediment	Measured: Thursday, 6 March 2014 2:37:32 p.	m.		
Samp <mark>le</mark> Source & type:	Measured by: rodgers	Analysed: Thursday, 6 March 2014 2:37:34 p.m.			
Sample bulk lot ref: 2014035/2	Result Source: Measurement		Résult Source:		
Particle Name: Marine Sediment	Accessory Name: Hydro 2000G (A)	Analysis model: General purpose	Sensitivity: Enhanced		
Particle RI: 1.500	Absorption: 0.2	Size range: 0.020 to 2000.000 um	Obscuration:		
Dispersant Name: Water	Dispersant RI: 1.330	Weighted Residual: 0.203 %	Result Emulation		
Concentration: 0.0977 %Vol	Span : 3.514	Uniformity: 1.19	Result units: Volume		
Specific Surface Area: 0.197 mବୃg	Surface Weighted Mean D[3,2]: 30.527 um	Vol. Weighted Mean D[4,3]: 224.266 um	Standard Deviation 289.365 um		
d(0.1): 16.804 um	d(0.5): 137.617 u	m d(0.9): 500.455 um		
7	Particle Size Distributi	on			
6		\land			
-					
(%)					
(%) 4					
%) 4 3					
%) 4 3 0/01/02					
%) 4 3					

				Pai	ticle Size	(µm)					
1242970	/2, Thurso	lay, 6 Ma	arch 2014 2	2:37:32 p	o.m.			-00	5475		
Size (um)	Vol Under %	Size (um)	Vol Undar %	Size (um)	Vol Under %	Size (um)	Vol Under %	Size (µm)	Vol Under %	Size (µm)	Vol Under %
0.050	0.00	0.990	0.45	37.000	18.95	105.000	39.86	300.000	80.12	640.000	94.74
0.060	0.00	2.000	0.91	44.000	21.19	125.000	46.18	350.000	84.05	1000.000	95.14
0.120	0.00	3.900	1.92	53.000	23.86	149.000	63.28	420.000	87.56	1190.000	97.49
0.240	0.00	7.800	4.37	63.000	26,78	177.000	60.58	500.000	83.99	1410.000	99.65
0,490	0.08	15.600	9.29	74.000	30.07	210.000	67.68	590.000	91,74	1680.000	99.54
0.700	0.27	31.000	16.78	88.000	34.42	250.000	74.28	710.000	93.36	2000.000	100.00

Operator notes:

Malvem Instruments Ltd. Malvern, UK Tel := +[44] (0) 1684-892456 Fax +[44] (0) 1684-892789 Masterster 2000 Ver. 5.60 Serial Number : MAL102144

File name: Hill Record Number: 1817 6/03/2014 5:05:19 p.m.

Operator notes:

Mastersber 2000 Ver. 5.60 Serlal Number : MAL102144 File name: Hill Record Number: 1818 6/03/2014 5:05:19 p.m.

Christchurch	
City Council	

Appendix No.1 - Particle Size Analysis Report - Page 4 of 11 lence and Engineering

O The University of Waikato Private Bag 3105 Hamilton, New Zealand

Result Analysis Report

Sample Name: 1242970/4	SOP Name: Measured: Marine Sediment Thursday, 6 March 2014 2:48:21 p.m.			
Sample Source & type:	Measured by: rodgers	Analysed: Thursday, 6 March 2014 2:48:22 p.m.		
Sample bulk lot ref: 2014035/4	Result Source: Measurement			
Particle Name: Marine Sediment	Accessory Name: Hydro 2000G (A)	Analysis model: Sensitivity: General purpose Enhanced		
Particle RI: 1.500	Absorption: 0.2	Size range: Obscuration: 0.020 to 2000.000 um 16.70 %		
Dispersant Name: Water	Dispersant RI: 1.330	Weighted Residual: Result Emulation 0.222 % Off		
Concentration: 0.0616 %Vol	Span : 5.962	Uniformity: Result units: 1.82 Volume		
Specific Surface Area: 0.264 m ^a g	Surface Weighted Mean D[3,2]: 22.686 um	Vol. Weighted Mean D[4,3]: Standard Deviatio 216.835 um 315.888 um		
d(0.1): 12.089 um	d(0.5): 98.014 un	d(0.9): 596,415 um		
	Particle Size Distributio	n		
4.5 4 3.5 % 3				

Operator notes:

Malvern Instruments Ltd. Malvern, UK Tel := +[44] (0) 1684-892456 Fax +[44] (0) 1684-892789 Mastersizer 2000 Ver. 5.60 Serial Number : MAL102144 File name: Hill Record Number: 1819 6/03/2014 5:05:19 p.m.

Christchurch	
City Council	

Appendix No.1 - Particle Size Analysis Report - Page 5 of 11 ience and Engineering

WAIKATO The University of Walkato

Result Analysis Report

Sample Name:	SOP Name: Measured:				
1242970/5	Marine Sediment Thursday, 6 March 2014 2:54:11 p.m.				
Sample Source & type:	Measured by: Analysed: rodgers Thursday, 6 March 2014 2:54:12 p.m.				
Sample bulk lot ref: 2014035/5	Result Source: Measurement				
Particle Name:	Accessory Name:	Analysis model:	Sensitivity:		
Marine Sediment	Hydro 2000G (A)	General purpose	Enhanced		
Particle RI:	Absorption:	Size range:	Obscuration:		
1.500	0.2	0.020 to 2000.000 um	17.40 %		
Dispersant Name:	Dispersant RI:	Weighted Residual:	Result Emulation		
Water	1.330	0.273 %			
Concentration:	Span :	Uniformity:	Result units:		
0.0804 %Vol	7.194	2	Volume		
Specific Surface Area:	Surface Weighted Mean D[3,2]:	Vol. Weighted Mean D[4,3]:	Standard Deviation		
0.21 m∛g	28.562 um	300.362 um	395.5 um		
d(0.1): 16.208 um	d(0.5): 125.182 (um d(0.9)): 916,751 um		
	Particle Size Distribut	ion			
3.5		\wedge	3 		
8 2.5 3 2.5		$/ \sim$			

Volume 1.5 1 0.5 8.01 0.1 100 1000 3000 1 10 Particle Size (µm) -1242970/5, Thursday, 6 March 2014 2:54:11 p.m. Size (µm) Vol Under % Size (um) Vol Under % Size (µm) Vol Under 9 0.05 0.00 0.990 0.5 37.00 22.14 105.000 45.55 300.000 70.45 640.000 88.45 49.96 54.40 58.67 0.060 0.00 1.01 44.000 25.51 125.000 350.000 73.42 000.000 91.54 2.000 2.02 0.120 0.00 53.000 63.000 29.40 3.900 149.000 420.000 75.67 1 190.000 84.51 7.800 97.05 33.24 177.000 79.62 500.000 1410.000 36.98 590.000 710.000 0.490 0.08 15.600 9.60 74.000 210.000 62.74 82.37 680.000 99.00 000.000 0.700 0.30 31,000 18.97 88.000 250.000 66.66 85.50 100.00

Operator notes:

Malvern Instruments Ltd. Malvern, UK Tel := +[44] (0) 1684-892456 Fax +[44] (0) 1684-892789

2

Masterster 2000 Ver. 5.60 Serial Number : MAL102144 File name: Hill Record Number: 1820 6/03/2014 5:05:19 p.m.

Operator notes:

Malvern Instruments Ltd. Malvern, UK Tel := +{44] (0) 1684-892456 Fax +{44] (0) 1684-892789 Mastersizer 2000 Ver. 5.60 Serial Number : MAI,102144 File name: Hill Record Number: 1821 6/03/2014 5:05:19 p.m.

Appendix No.1 - Particle Size Analysis Report - Page 7 of 11 ience and Engineering The University of Walkato

O The University of Waikato Private Bag 3105 Hamilton, New Zealand

Result Analysis Report

	199 8 - 199 - 199 - 199						
SOP Name: Marine Sediment	Measured: Thursday, 6 March 2014 3:04:25 p.m.						
Measured by: rodgers	Analysed: Thursday, 6 March 2014 3:04:27 p.m.						
Result Source: Measurement							
Accessory Name: Hydro 2000G (A)	Analysis model: Sensitivity: General purpose Enhanced						
Absorption:	Size range: Obscuration: 0.020 to 2000.000 um 14.67 %						
Dispersant RI: 1.330	Weighted Residual: Result Emulation 0.342 % Off						
Span : 8.122	Uniformity: Result units: 2.77 Volume						
Surface Weighted Mean D[3,2]: 12.977 um	Vol. Weighted Mean D[4,3]: Standard Deviatio 169.055 um 276.932 um						
d(0.5): 53.882 ur	n d(0.9); 444.135 um						
Particle Size Distributi	n						
/							
	Marine Sediment Measured by: rodgers Result Source: Measurement Accessory Name: Hydro 2000G (A) Absorption: 0.2 Dispersant RI: 1.330 Span : 8.122 Surface Weighted Mean D[3,2]: 12.977 um						

1 0.5 8.01 3000 0.1 1 10 100 1000 Particle Size (µm) -1242970/7, Thursday, 6 March 2014 3:04:25 p.m. Vol Under % Vol Under % Size (µm) Val Under % Size (µm Vol Under % Size (µm VolU rider Size (J 520 (61.25 64.63 300.000 350.000 95.74 96.97 42.70 46.23 105.000 83.94 86.65 640.000 0.05 0.00 0.990 1.34 37.000 0.00 2.82 44.000 000.000 0.060 2.000 68.37 72.31 0.00 5.65 12.12 49.71 52.67 89.30 91.34 0.120 3.900 53.000 149.000 420.000 190.000 98.08 0.240 7.800 63.000 177.000 500.000 410.000 98.99 0.490 0.27 15.500 23.72 74.000 55.31 210.000 76.30 590.000 92.93 680.000 99.66 0.700 0.78 31.000 36.65 88.000 58,16 250.000 80.22 710.000 94.47 2000.000 100.00

Operator notes:

Malvern Instruments Ltd. Malvern, UK Tel := +[44] (0) 1684-892456 Fax +[44] (0) 1684-892789 Mastersizer 2000 Ver. 5.60 Serial Number : MAL102144 Fie name: Hill Record Number: 1822 6/03/2014 5:05:19 p.m.

Operator notes:

Malvern Enstruments Ltd. Malvern, UK Tel := +[44] (0) 1684-892456 Fax +[44] (0) 1684-892789 Masterster 2000 Ver. 5.60 Serial Number : MAL102144 File name: Hill Record Number: 1823 6/03/2014 5:05:19 p.m.

Operator notes:

÷

Mastersizer 2000 Ver. 5.60 Serial Number : MAL102144 File name: Hill Record Number: 1824 6/03/2014 5:05:19 p.m.

Appendix No. 1 - Particle Size Analysis Report - Page 10 of 11 noe and Engineering TTTA TTZ A TTO The University of Waikato

Result Analysis Report

Sample Name: 1242970/10	SOP Name: Marine Sediment	Measured: Thursday, 6 March 2014 3:48:15 p.	m.				
Sample Source & type:	Measured by: rodgers	Analysed: Thursday, 6 March 2014 3:48:17 p.m.					
Sample bulk lot ref: 2014035/10	Result Source: Measurement						
Particle Name: Marine Sediment	Accessory Name: Hydro 2000G (A)	Analysis model: General purpose	Sensitivity: Enhanced Obscuration: 14.21 %				
Particle RI: 1.500	Absorption: 0.2	Stze range: 0.020 to 2000.000 um					
Dispersant Name: Dispersant RI: Vater 1.330		Weighted Residual: 0.350 %	Result Emulation: Off				
Concentration:	Span :	Uniformity:	Result units:				
0.0326 %Vol	11.807	3.31	Volume				
Specific Surface Area:	Surface Weighted Mean D[3,2]:	Vol. Weighted Mean D[4,3]:	Standard Deviation				
0.421 m%g	14.257 um	231.658 um	360.458 um				

Operator notes:

Malvern Instruments Ltd. Malvern, UK Tel := +[44] (0) 1684-892456 Fax +[44] (0) 1684-892789 Mastersizer 2000 Ver. 5.60 Serial Number : MAL102144

File name: Hill Record Number: 1825 6/03/2014 5:05:19 p.m.

Christchurch	
City Council	

Appendix No.1 - Particle Size Analysis Report - Page 11 of 11 nee and Engineering

The University of Waikato Private Bag 3105 Hamilton, New Zealand

Result Analysis Report

Sample Name: 1242970/11	SOP Name: Marine Sediment	Measured: Thursday, 6 March 2014 3:53:11 p.m.							
Sample Source & type:	Measured by: rodgers	Analysed: Thursday, 6 March 2014 3:53:13 p.r	Analysed: Thursday, 6 March 2014 3:53:13 p.m.						
Sample bulk lot ref: 2014035/11	Result Source: Measurement								
Particle Name: Marine Sediment	Accessory Name: Hydro 2000G (A)	Analysis model: General purpose	Sensitivity: Enhanced Obscuration: n 14.79 % Result Emulation: Off Result units: Volume Standard Deviation 98.245 um						
Particle RI: 1.500	Absorption: 0.2	Size range: 0.020 to 2000.000 um							
Dispersant Name: Water	Dispersant RI: 1.330	Weighted Residual: 0.311 %							
Concentration: 0.0486 %Vol	Span : 2.177	Uniformity: 0.673							
Specific Surface Area: 0.302 mବୃg	Surface Weighted Mean D[3,2]: 19.874 um	Vol. Weighted Mean D[4,3]: 128.891 um							
d(0.1): 12.219	m d(0.5): 115.035	um d(0.9)	: 262.646 um						
9	Particle Size Distri	bution	-						
8		\wedge							
7		/							
Q 6			-						
e 5		<u> </u>							
(%) amulov									
\$ 3			-						

Particle Size (µm)

23.42 26.24

29.49

33.38 38.81

Size (µm) Vol Under % 37.000 21.15

44.000

53.000

63.000

74.000

88.000

10

100

45.82

54.09 63.33

72.54

81.02 88.27

Size (um) Vol Under %

105.000

125.000

149.000

177.000

210.000 250.000 1000

96.99 99.04

99.84

100.00

Size (µm) Vol Under % 300,000 93.88

350.000

420.000

500,000

590.000 710.000 3000

Size (um) Vol Under %

100.00

100.00

100.00

100.00

\$40.000

1000.000

1190.000

1410.000

1 680.000 2000.000

1

Operator notes:

Malvem Instruments Ltd. Malvem, UK Tel := +[44] (0) 1684-892456 Fax +[44] (0) 1684-892789

2

8.01

Size (um) Vol Under %

0.00

0.00 0.00

0.00

0.22

0.05

0.060

0.240

0.490

0.700

0.1

-1242970/11, Thursday, 6 March 2014 3:53:11 p.m.

0.980

2.000 3.900

7.900

15.600 31.000

Size (um) Vol Under %

0.98

1.93 3.68

7.06

11.94 19.00

> Mastersizer 2000 Ver. 5.60 Serial Number : MAL102144

File name: Hill Record Number: 1826 6/03/2014 5:05:19 p.m.

6 Appendix B: Chi-Square Test Results

Table 4. Chi-square Goodness-of-Fit tests between years for total copper concentrations in
sediment samples from the eleven sites of the Styx Stormwater Management Plan. Green P-
values are statistically significant (P < 0.05) and red P-values are non-significant. d.f = degrees
of freedom. N/A = Not Applicable, as site not surveyed.

Site	Concentrations (mg/kg dry weight)			X ²		Overall <i>P</i> -		
	1980	2009	2014	Value	d.f.	Value	Differences	
Styx River at Sawyers Arms Road	8	29	36	18.3	2	0.00	1980<2009<2014>1980	
Styx River in Styx Mill Reserve	N/A	N/A	12	-	2	-	-	
Styx River at Main North Road	3	4	70	116.8	2	0.00	1980<2009<2014>1980	
Styx River at Redwood Springs	8	13	16	3.1	2	0.22	1980=2009=2014=1980	
Horners Drain	8	45	22	28.6	2	0.00	1980<2009>2014>1980	
Kaputone Creek at Blakes Road	20	21	59	29.4	2	0.00	1980<2009<2014>1980	
Kaputone Creek at Belfast Road	12	26	170	222.0	2	0.00	1980<2009<2014>1980	
Styx River at Marshlands Road Bridge	4	6	10	2.5	2	0.29	1980=2009=2014=1980	
Styx River at Richards Bridge	6	17	18	6.0	2	0.05	1980=2009=2014=1980	
Styx River at Kainga Road	4	4	17	12.5	2	0.00	1980<2009<2014>1980	
Wilsons Drain	N/A	24	36	2.4	1	0.12	2009=2014	

Table 5. Chi-square Goodness-of-Fit tests between years for total lead concentrations insediment samples from the eleven sites of the Styx Stormwater Management Plan. Green P-values are statistically significant (P < 0.05) and red P-values are non-significant. d.f = degreesof freedom.

Site	Concentrations (mg/kg dry weight)			X ²		Overall <i>P</i> -	
	1980	2009	2014	Value	d.f.	Value	Differences
Styx River at Sawyers Arms Road	21	74	70	32.2	2	0.00	1980<2009>2014>1980
Styx River in Styx Mill Reserve	N/A	N/A	12	-	2	-	-
Styx River at Main North Road	29	7	12	17.1	2	0.00	1980>2009<2014<1980
Styx River at Redwood Springs	14	23	21	2.3	2	0.32	1980=2009=2014=1980
Horners Drain	78	93	14	57.1	2	0.00	1980<2009>2014<1980
Kaputone Creek at Blakes Road	41	72	53	8.8	2	0.01	1980>2009<2014=1980
Kaputone Creek at Belfast Road	28	52	76	22.2	2	0.00	1980<2009<2014>1980
Styx River at Marshlands Road Bridge	10	20	13	3.8	2	0.15	1980=2009=2014=1980
Styx River at Richards Bridge	13	27	25	5.2	2	0.07	1980=2009=2014=1980
Styx River at Kainga Road	8	5	22	13.3	2	0.00	1980>2009<2014>1980
Wilsons Drain	N/A	48	47	0.0	1	0.92	2009=2014

Table 6. Chi-square Goodness-of-Fit tests between years for total zinc concentrations insediment samples from the eleven sites of the Styx Stormwater Management Plan. Green P-values are statistically significant (P < 0.05) and red P-values are non-significant. d.f = degreesof freedom.

Site	Concentrations (mg/kg dry weight)			X ²		Overall <i>P</i> -	
	1980	2009	2014	Value	d.f.	Value	Differences
Styx River at Sawyers Arms Road	61	220	150	87.9	2	0.00	1980<2009>2014>1980
Styx River in Styx Mill Reserve	N/A	N/A	12	-	2	-	-
Styx River at Main North Road	31	64	50	11.6	2	0.00	1980<2009>2014>1980
Styx River at Redwood Springs	66	130	150	33.5	2	0.00	1980<2009<2014>1980
Horners Drain	79	760	50	1089.7	2	0.00	1980<2009>2014<1980
Kaputone Creek at Blakes Road	366	610	500	60.7	2	0.00	1980<2009>2014>1980
Kaputone Creek at Belfast Road	224	430	600	169.6	2	0.00	1980<2009<2014>1980
Styx River at Marshlands Road Bridge	38	86	50	21.4	2	0.00	1980<2009>2014>1980
Styx River at Richards Bridge	69	230	180	85.1	2	0.00	1980<2009>2014>1980
Styx River at Kainga Road	42	63	100	25.6	2	0.00	1980<2009<2014>1980
Wilsons Drain	N/A	330	340	0.1	1	0.70	2009=2014

Table 7. Chi-square Goodness-of-Fit tests between years for
Total Organic Content (TOC)
levels in sediment samples from the eleven sites of the Styx Stormwater Management Plan.Green P-values are statistically significant (P < 0.05) and red P-values are non-significant. d.f =
degrees of freedom.

Site		ntrations ry weight)			Overall P-		
	2009 2014		X ² Value	d.f.	Value	Differences	
Styx River at Sawyers Arms Road	8	3	1.8	1	0.18	2009=2014	
Styx River in Styx Mill Reserve	N/A	12	N/A	1	-	-	
Styx River at Main North Road	0	8	6.3	1	0.01	2009<2014	
Styx River at Redwood Springs	5	5	0.0	1	0.85	2009=2014	
Horners Drain	5	1	3.6	1	0.06	2009=2014	
Kaputone Creek at Blakes Road	10	9	0.0	1	0.89	2009=2014	
Kaputone Creek at Belfast Road	14	15	0.0	1	0.93	2009=2014	
Styx River at Marshlands Road Bridge	1	4	1.6	1	0.21	2009=2014	
Styx River at Richards Bridge	4	5	0.1	1	0.70	2009=2014	
Styx River at Kainga Road	0	1	0.4	1	0.54	2009=2014	
Wilsons Drain	7	6	0.0	1	0.89	2009=2014	

Table 8. Chi-square Goodness-of-Fit tests between years for Total Polyaromatic Hydrocarbons(PAHs) concentrations in sediment samples from the eleven sites of the Styx StormwaterManagement Plan. Green P-values are statistically significant (P < 0.05) and red P-values are
non-significant. d.f = degrees of freedom.

Site		ntrations ry weight)			Overall <i>P</i> -		
	2009	2014	X ² Value	d.f.	Value	Differences	
Styx River at Sawyers Arms Road	0.18	0.25	0.0	1	0.92	2009=2014	
Styx River in Styx Mill Reserve	NT	ND	N/A	1	N/A	N/A	
Styx River at Main North Road	ND	ND	N/A	1	N/A	N/A	
Styx River at Redwood Springs	ND	ND	N/A	1	N/A	N/A	
Horners Drain	0.92	0.89	0.0	1	0.98	2009=2014	
Kaputone Creek at Blakes Road	0.16	ND	N/A	1	N/A	N/A	
Kaputone Creek at Belfast Road	ND	ND	N/A	1	N/A	N/A	
Styx River at Marshlands Road Bridge	3.90	ND	N/A	1	N/A	N/A	
Styx River at Richards Bridge	0.24	ND	N/A	1	N/A	N/A	
Styx River at Kainga Road	ND	0.39	N/A	1	N/A	N/A	
Wilsons Drain	2.10	0.53	0.9	1	0.33	2009=2014	