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Executive summary 
Christchurch City Council (CCC) was granted consent by Environment Canterbury to discharge water 

and contaminants to land and water from the stormwater network in December 2019, under what is 

known as the Comprehensive Stormwater Network Discharge Consent (CSNDC; CRC2391955). The 

consent includes a stormwater quality investigation programme (Schedule 3) with multiple actions, 

one of which (Schedule 3, item d, to commence within 12 months, and be completed within 4 years 

of the consent commencement) is to:  

“Conduct a feasibility study to establish the existing knowledge base and investigate the feasibility of 

robustly predicting the responses of the receiving environment to changes in network contaminant 

loads and resulting in-stream concentrations. 

Consideration shall be given to how and when the receiving environment might respond to changes in 

contaminant concentrations, how much work would be involved to predict results, what sorts of 

models are possible, how would monitoring to obtain real world results be carried out, how long 

would it take the biological community to respond (i.e., lag effects).” 

This document reports on that feasibility study. The objectives of the project were to: 

▪ Assess the feasibility of: 

− Robustly predicting how and when the receiving environment might respond to 

changes in network contaminant loads and resulting in-stream concentrations, as 

well as changes in other limiting factors (e.g., habitat availability), 

− Quantifying which limiting factors (i.e., not just stormwater treatment) would have 

the greatest ecological benefit, the quickest ecological benefit, or limited ecological 

benefit, if they were to be addressed, 

− Assessing the response within the waterways with consideration of a range of 

variables: Cultural Health Index, Water Quality Index, Macroinvertebrate Community 

Index/Quantitative Macroinvertebrate Community Index, and fish diversity and 

abundance 

− Assessing the response within Ihutai for the following variables: Cultural Health 

Index, Estuary Trophic Index, and benthic invertebrate abundance and presence. 

▪ Determine the resources required (e.g., time and money) to carry out the full assessment. 

The scope of this study was constrained to the ability to predict responses within the streams and 

rivers of Ōtautahi, and not including streams within settlements of Banks Peninsula, as there is more 

monitoring data and other information for the former. The scope also includes predicting responses 

in coastal receiving environments – this was constrained to the Avon-Heathcote Estuary / Ihutai for 

the same reason. The scope was also constrained to predicting freshwater macroinvertebrate 

responses (based on indices) and estuarine macrofauna, as the likely influences on this trophic level 

are better understood than influences on fish.  

Christchurch City Council aim to reduce the network contaminant loads of total suspended sediment, 

copper and zinc by 20-30% over 25 years, with the bulk of reductions in the first five years. The 

mechanisms by which sediment and metals affect freshwater and estuarine biota are relatively well-

known. However, these contaminants are not the only stressors affecting freshwater and estuarine 
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ecosystems. The ability to predict the effects of changes in these contaminants requires an 

understanding of the other stressors and how they may interact to either promote or curb recovery 

of the biological communities. 

There is a considerable body of data for the Ōtautahi streams, including regular water quality 

monitoring at 45 sites, and habitat data throughout the majority of its stream reaches. However, 

macroinvertebrates and fish are surveyed only every five years. In Ihutai, macrofauna and the mud 

content of sediment are surveyed annually, and sediment quality every five years, though the spatial 

coverage of the monitoring is relatively low (4-6 sites). 

There are a variety of “off-the-shelf” models for freshwater ecosystems, however few existing 

models include the key stressors needed for predicting responses in urban streams. The Urban 

Planning to Sustain Waterbodies (UPSW) Bayesian Network (BN) is one model that was developed for 

such a purpose, however it predicts the state of qualitative indicators of freshwater ecosystem 

health, rather than quantitative measures. Other existing models either do not include metals or 

require substantial work to parameterise relationships between stressors and invertebrate 

responses.  

In estuaries, there are three models that have been developed in New Zealand to understand and 

predict the effects of changes in water quality and sediment conditions on benthic 

macroinvertebrates. These are the Estuarine Bayesian Network, the Benthic Health Model and the 

Estuarine Trophic Index. Only two of these include metals, and only one includes both metals and 

nutrients as stressors – the latter are known to be important drivers of ecosystem health in Ihutai. 

There are also many statistical modelling methods (such as generalised linear models, generalised 

additive models (GAM), random forest, boosted regression trees, structural equation modelling, and 

risk analyses) that could be used to test which are the key stressors in Ōtautahi streams, using the 

available monitoring data. Each method has different strengths, such as the number of predictors 

and the types of relationships that can be included (e.g., linear vs more complex), and whether 

random terms can be included or not.  

Two types of models were tested for the freshwater receiving environments: the existing UPSW BN, 

and a type of GAM that includes random effects, known as a generalised additive mixed model 

(GAMM). BNs are useful because they can incorporate expert knowledge when quantitative data are 

not available, while GAMMs can include random terms to account for similarities in stressors and 

biological communities between catchments and are recommended for developing predictive 

models. 

Data first needed to be collated into a form suitable for use in these models – this required the 

calculation of summary statistics for the regular water quality monitoring, and metrics to represent 

hydrology. As hydrology, water quality and sediment quality are typically not measured at the same 

sites as the macroinvertebrate monitoring, this also required data to be matched to the closest sites, 

and an assumption that water quality and/or hydrology at a nearby site (either upstream or 

downstream) would be representative of that at the macroinvertebrate monitoring site. This exercise 

resulted in a final data set of 53 sites with more than 100 different metrics for potential stressors.  

The freshwater BN was tested using data for seven sites in Ōtautahi where measured data spanned a 

range of metal concentrations, upstream impervious cover, bank lining/reinforcing, and riparian 

vegetation. The seven sites tested also had water quality and ecological monitoring data from the 

same location, or very near. The BN predictions matched the order of the monitoring data for most 
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sites – i.e., the BN predicted highest scores for macroinvertebrate health at sites with the highest 

observed metrics for macroinvertebrates, and the lower predicted scores were for sites with 

generally lower observed metrics (although there was variation between measured metrics at these 

sites). The testing suggested that BNs could be appropriate for predicting macroinvertebrate 

community responses to key stressors and multi-stressor interactions but would need further 

validation in Ōtautahi streams.  

The GAMM was tested using two macroinvertebrate indices: the quantitative macroinvertebrate 

community index for hard-bottomed streams (QMCI-hb) and the percentage of individuals in the 

orders Ephemeroptera, Plecoptera, and Trichoptera (EPT) excluding those in the family Hydroptilidae 

(as these caddisflies are generally considered to be pollution tolerant). The GAMM was developed 

with QMCI-hb and percentage EPT as the response variables and a random waterway term to 

account for the similarity of sites connected longitudinally by water flow. Due to the small size of the 

dataset, only four out of 100 potential predictor variables could be included in the model. We 

selected the following predictors: periphyton (as the weighted composite cover of filaments and 

mats), percent silt/sand coverage of the streambed, water velocity and median concentrations of 

dissolved zinc. This was an example model only; to apply this method to develop a predictive model 

for management decision-making would first require a detailed investigation of the best subset of 

predictors to include (which was out of scope of this report). The GAMM model testing highlighted 

the challenges of modelling large numbers of potential stressors with small datasets and difficulties 

attributing causality when many stressors are correlated. Furthermore, model results need to be 

sense-checked for over-complexity which may not be ecologically realistic.   

The estuarine BN was tested for predicting responses in Ihutai. This required an assumption that the 

sediment quality data collected in Ihutai (i.e., metal concentrations in <2 mm fraction of surface 

sediment) was equivalent to that used as model inputs (i.e., metal concentrations in < 0.5 mm 

fraction of surface sediment). The predictions of the current state were relatively consistent with the 

monitoring data, suggesting this model could be useful for predicting future state with reduced 

sediment and metal inputs.  

We recommend Bayesian Networks as the most suitable option for predicting biological responses in 

both freshwater and estuarine environments. BNs can incorporate multiple correlated stressors and 

test predictions under various future scenarios. This also makes them useful educational tools, as 

they demonstrate how multiple issues may need to be addressed before an improvement in 

macroinvertebrate communities can occur. Nonetheless, BNs are only as good as the data used to 

make them, and the existing freshwater and estuarine BN will need updating and/or parameterising 

for Ōtautahi. This could include refining the existing parameters based on local expert knowledge 

and adding new nodes for factors not currently included , such as distance to colonist source for 

freshwater macroinvertebrates. For Ihutai, a model that relates changes in sediment and metal loads 

to changes in estuarine benthic sediment is also needed. The updated model(s) should then be 

further tested for as many sites as possible in Ōtautahi. Following that, sensitivity analysis of the 

model should be undertaken to indicate the range of ecosystem response that might be expected 

with changes in contaminant loading.  

We consider that it is feasible to use BN models to predict how the receiving environment might 

respond to changes in network contaminant loads and resulting in-stream concentrations, as well as 

changes in other limiting factors (e.g., habitat availability). Assessment and/or development of 

conditional probability tables for stressors specific to Ōtautahi waterways, and assessment of the 

sensitivity of model outputs to changes in these tables, would improve the robustness of predictions. 
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Whether a BN can predict when these changes would occur is less certain. Like other modelling 

methods developed from data collected across a range of stressor conditions (i.e., rather than a 

time-series model), BNs do not account for time required for biological communities to recover, and 

in reality there will be a lag between stressor reduction and any change in macroinvertebrate metric 

scores. The BN models are suitable for quantifying factors that have greatest ecological benefit if 

addressed and can be used for a range of different variables as identified by CCC, except for fish 

diversity and abundance, due to lack of suitable data. The resources required to develop BN models 

can be adapted to suit the resource available – for example, the models can use expert judgement in 

many places, or additional studies can be undertaken to inform relationships between nodes.  

 

 



 

Predicting effects of contaminant load reductions on biological communities: Feasibility study  11 

 

1 Introduction 

1.1 Background 

Christchurch City Council (CCC) was granted consent by Environment Canterbury to discharge water 

and contaminants to land and water from the stormwater network in December 2019, under what is 

known as the Comprehensive Stormwater Network Discharge Consent (CSNDC; CRC231955). The 

consent includes a stormwater quality investigation programme (Schedule 3) with multiple actions, 

one of which (Schedule 3, item d, to commence within 12 months, and be completed within 4 years 

of the consent commencement) is to:  

“Conduct a feasibility study to establish the existing knowledge base and investigate the feasibility of 

robustly predicting the responses of the receiving environment to changes in network contaminant 

loads and resulting in-stream concentrations. 

Consideration shall be given to how and when the receiving environment might respond to changes in 

contaminant concentrations, how much work would be involved to predict results, what sorts of 

models are possible, how would monitoring to obtain real world results be carried out, how long 

would it take the biological community to respond (i.e., lag effects).” 

Under the terms and duration of the consent, CCC are installing stormwater mitigation facilities and 

devices to reduce the loads of total suspended sediment, copper and zinc by 20-30% over 25 years, 

with the bulk of reductions in the first five years (15-23%). However, it is unclear whether these 

reductions will result in immediate (or lagged) improvements in biological communities for two 

general reasons. Firstly, reductions in total metal loads may not result in the equivalent reduction in 

dissolved metal concentrations in streams, or within the Avon-Heathcote Estuary / Ihutai (referred to 

herein as Ihutai). That is, a 15% reduction in annual metal load may not result in a 15% reduction in 

median concentration – for example if most of load reduction is from metals delivered during storm 

flows, or if only particulate metals are removed with no change to dissolved metals. Further, metals 

contained in stream or Ihutai bed sediments are expected to take time to decline in response to a 

reduction of inputs, as “cleaner” sediments will mix with the existing sediments due to physical 

mixing and that from burrowing biota. Secondly, ecological responses are driven by multiple 

environmental stressors, which have both direct and indirect effects and it is possible that sediment 

and metal concentrations may not be the factors that are currently limiting biological communities. 

Within urban streams, in particular, there are a multitude of factors that influence biological 

communities and lead to the “urban stream syndrome” (a term to describe the ecological 

degradation of streams draining urban land, (Meyer et al. 2005, Walsh et al. 2005)). For example, 

increased stormflow associated with the increased impervious surface area in urban areas has been 

recognised as the primary driver of poor stream condition in many places around the world (Konrad 

and Booth 2005, Walsh et al. 2005). Further complicating the matter, many mechanisms influencing 

urban streams are interactive – for example, changes to the hydrology effects can influence water 

quality, particularly sediment transport. Therefore, any assessment of the likely effect of reductions 

in contaminant load (and in-stream concentrations) needs to be cognisant of the other influences on 

water quality and biological communities. 

Linking reductions in contaminant loads to ecological responses is highly complex, particularly in 

multi-stressor environments like urban waterways. This is an area of ongoing research internationally 

and one that is not easily solved. The CCC contracted NIWA with determining the feasibility of linking 

https://www.journals.uchicago.edu/doi/10.1086/684940#rf22
https://www.journals.uchicago.edu/doi/10.1086/684940#rf43
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reductions in contaminant loads with potential ecological responses within the waterways of 

Ōtautahi and Ihutai, considering the current data available and complexity of multiple stressor 

environments. 

1.2 Project goals 

The objectives of this project were to: 

▪ Assess the feasibility of: 

− Robustly predicting how and when the receiving environment might respond to 

changes in network contaminant loads and resulting in-stream concentrations, as 

well as changes in other limiting factors (e.g., habitat availability), 

− Quantifying which limiting factors (i.e., not just stormwater treatment) would have 

the greatest ecological benefit, the quickest ecological benefit, or limited ecological 

benefit, if they were to be addressed, 

− Assessing the response within the waterways with consideration of a range of 

variables: Cultural Health Index, Water Quality Index, Macroinvertebrate Community 

Index/Quantitative Macroinvertebrate Community Index, and fish diversity and 

abundance, consistent with those used in the Healthy Waterbodies Action Plan 

(Margetts 2023). 

− Assessing the response within Ihutai for the following variables: Cultural Health 

Index, Estuary Trophic Index, and benthic invertebrate abundance and presence. 

▪ Determine the resources required (e.g., time and money) to carry out the full assessment. 

1.3 Project scope 

This project covers the response of biological communities to changes in stormwater contaminant 

loads. The first step in this causal chain is a change in the in-stream concentrations of suspended 

sediment and metals and, for Ihutai, the bed sediment concentrations. There are multiple methods 

to predicting changes in in-stream concentrations based on changes in contaminant loads, and a 

review of these is outside the scope of this project, as it is the subject of other investigations by CCC. 

We have included a very brief discussion of methods to predict bed sediment and metal 

concentrations in Ihutai as, to the best of our knowledge, this is not being addressed by other CCC 

investigations. Therefore, the models described in the remainder of this report are those that focus 

on predicted biological responses from in-stream metal concentrations and sediment (suspended 

and deposited) (freshwater) or bed sediment concentrations (estuary). 

The scope of Schedule 3(d) includes freshwater (streams, lakes and wetlands) and estuarine receiving 

environments. Furthermore, the consent covers not just the city of Ōtautahi but also the smaller 

towns and settlements around Banks Peninsula. In this project, we have restricted the scope of 

works to just the streams and rivers of Ōtautahi in recognition of the following:  

▪ There is more information (particularly routine monitoring) available regarding the water 

quality and ecology of Ōtautahi streams than for the many streams in the Banks Peninsula 

settlements. 
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▪ Contaminant loads have been predicted for the four rivers of Puharakekenui/Styx, 

Ōtākaro/Avon, Ōpāwaho/Heathcote and Huritini/Halswell for both current and future 

scenarios. 

▪ Ōtautahi is the largest urban centre within Christchurch City Council’s area, with the most 

commercial and industrial land, and therefore the location with the highest loads of 

contaminants and likely the greatest effects. 

▪ Many of the streams in Banks Peninsula settlements also have large rural areas in the 

catchment and the effect of the urban land use may be lower, or confounded by rural 

land use effects. 

Furthermore, we have restricted to the scope for coastal receiving environments to the Avon-

Heathcote Estuary / Ihutai (referred to herein as Ihutai) and to the responses of the benthic 

invertebrate communities. This is in recognition of the following: 

▪ There is considerable information available for Ihutai (in terms of water quality, predicted 

loads of contaminants, sediment quality, macroinvertebrate communities) than for 

estuaries or coastal areas. 

▪ The drivers of estuarine macrofaunal community diversity and abundance are far better 

understood and defined than those for estuarine fish species. 

1.4 Approach 

We used a four-stage approach to meet the goals for this project, as outlined below. 

Stage 1: Conceptual modelling of influences on freshwater and estuarine environments 

We developed diagrams of conceptual models for Ōtautahi streams in a collaborative workshop with 

CCC staff and their expert panel of freshwater ecologists (focussing on freshwater ecosystems). A 

conceptual model is visual representation of the system, that describes our understanding of the 

system, including causes and effects1. We developed models for periphyton, macrophytes, 

macroinvertebrates, and fish, including potential connections between models (i.e., periphyton 

influences on macroinvertebrates). The conceptual models were used to guide the search for 

information (and data) that would be required to derive and use any statistical or mathematical 

models. During this stage, we also discussed and refined a definition of the “biological community” as 

referred to in the consent condition. 

Stage 2: Establish the knowledge base for Ōtautahi streams and for Ihutai  

This stage involved collating data and reviewing information on the biological communities and 

potential stressors in the freshwater receiving environments as defined above, for the four river 

catchments of Ōtautahi and Ihutai. 

Stage 3: Review potential modelling approaches for freshwater and estuarine environments 

We reviewed the modelling methods currently available to assist in understanding and predicting  

freshwater and estuarine ecosystem responses. We investigated models designed specifically for 

 
1 Note that a conceptual model is merely the first step in developing a predictive model, and does not fulfil the requirements for this 
project. 
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urban water bodies and more generic statistical approaches that could be adapted for Ōtautahi 

urban streams and Ihutai. We used three guiding questions: 

▪ What ‘off-the-shelf’ ecological response models are available for the target biological 

responses? These models, which include process-based and statistical are pre-

developed but may require parameters to be refined to increase specificity for 

Ōtautahi waterways. 

▪ What statistical models could be used to generate predictive models using the data 

available? 

▪ Do these model types meet the needs of CCC, as outlined above (in Section 1.2)? 

Stage 4: Testing of models for feasibility of predicting responses in the receiving environment 

The fourth stage in this project included testing selected models for freshwater and estuarine 

systems. The test results were then discussed in a workshop with CCC staff and their ecology expert 

panel to decide whether any of the models tested are suitable for the purposes specified by the 

consent. 

1.5 Contents of this report 
This report is set out in a structure that broadly follows the above steps: 

▪ A brief review (section 2) of how the key contaminants copper, zinc and sediment 

influence freshwater and estuarine ecosystems, both on their own and in conjunction 

with other stressors.  

▪ Section 3 focusses on knowledge specific to Ōtautahi’s receiving environments and 

includes an overview of the data available to use or develop models, and our existing 

understanding of the key stressors and their effects in these locations. 

▪ Section 4 reviews the different models that currently exist for modelling metal 

concentrations in receiving environments, and for predicting effects in freshwater and 

estuarine ecological systems. Potential statistical modelling approaches that can be 

used to develop bespoke models are also discussed. 

▪ In section 5, the feasibility of modelling freshwater ecological systems is assessed. This 

included the preliminary development of statistical models for freshwater using GAMs; 

and testing of an existing ‘off-the-shelf’ model.  

▪ In section 6, the feasibility of modelling estuarine ecological systems is assessed. This 

included testing of an existing ‘off-the-shelf’ model for estuarine environments.  

▪ Section 7 discusses the limitations and uncertainties in predictive modelling, provides 

our conclusions from this feasibility assessment and our recommendations for next 

steps. 
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2 What is the knowledge base for predicting ecological 
responses? 

2.1 What do we know about ecological responses to sediment and metals? 

2.1.1 Sediment 

The effects of sediment on freshwater biological communities were reviewed in detail in developing 

sediment attribute thresholds for the National Objectives Framework, including both suspended and 

deposited sediment (see Franklin et al. (2019) and Depree et al. (2018)). Increases in deposited fine 

sediment alter macroinvertebrate community composition in streams, (Burdon et al. 2013, Clapcott 

2011), which is commonly attributed to decreased habitat area and volume (i.e., reductions in coarse 

substrate and interstitial spaces). Mayfly, stonefly and caddisfly taxa (Ephemeroptera, Plecoptera 

and Trichoptera; EPT) are amongst the most sensitive and show a strong nonlinear response to 

changes in deposited sediment (Figure 2-1), with marked declines above a threshold of 20% fine 

sediment cover in one study of streams in an agricultural area (Burdon et al. 2013). Suspended 

sediments also affect biota (see Depree et al. (2018) for a review) – reducing clarity and hence 

photosynthesis of in-stream plants and clogging filter feeding structures of some macroinvertebrates 

and fish (Boubée et al. 1997, Rowe et al. 2009). 

 

Figure 2-1: Effect of fine deposited sediment visually assessed over a reach (left plot) or a smaller patch 
scale (right plot) on freshwater macroinvertebrates, as shown by the EPT metric (percentage of sensitive EPT 
individuals).  Figure from Burdon et al (2013). 

Fine sediment also influences estuarine macrofaunal communities, reducing abundance and diversity 

as mud content increases (Thrush et al. 2008, Thrush et al. 2003c, Thrush et al. 2003d). Thrush et al. 

(2003c) used macroinvertebrate density data and sediment characteristics (mud to sand ratio) to 

develop statistical (logistic regression) models of macrofaunal presence and demonstrated that 

individual species vary in their habitat preference along a sand to mud gradient. These models, as 

illustrated in Figure 2-2 show some species are more likely to be present at higher mud content 

(species in box a), whilst others prefer a low mud content and are either somewhat less (box b) or 

much less (box c) likely to be present in sediments with higher mud content. Other species 

demonstrate an optimum range (d), which may be broad or narrow. Thrush et al. (2003b) stated that 

the models themselves may not be directly useful for predicting macrofaunal responses to changing 

sediment characteristics without further testing, however they do illustrate the complex 

relationships between sediment mud content and presence of individual species – including positive, 
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negative and quadratic relationships. This work also illustrates some of the complications involved in 

the use community composition metrics (e.g., number of taxa). 

 

Figure 2-2: Logistic regression models for predicting probability of occurrence of macrofauna species and 
crab burrows relative to sediment mud content.  Figure from Thrush et al (2003b). 

 

2.1.2 Metals 

There are many contaminants of concern present in stormwater, including metals (cadmium, copper, 

lead, nickel, zinc), hydrocarbons (including PAHs) and other organic micropollutants such as 

pesticides (Williamson & Mills 2009). Copper and zinc are two of the most ubiquitous (and relatively 

easy to monitor) and as such are frequently used as indicators of stormwater contamination. Many 

of the methods that would reduce the effects of these two metals would also reduce effects of other 

contaminants of concern.  

The effects of copper and zinc on freshwater and estuarine biological communities are comparatively 

well-known. Although both metals are essential nutrients2 at low concentrations and required in 

multiple enzymes and other proteins, they can also cause acute and chronic toxicity at higher 

concentrations – that is, they demonstrate hormesis (Figure 2-3). In addition to acute effects such as 

mortality, chronic exposure to excess metals can result in alterations of brain function, enzyme 

activity, blood chemistry, and metabolism which lead to adverse effects on growth, reproduction and 

survival of macroinvertebrates and fish, and reduced growth of algae. These effects on individuals 

can result in changes in population and community structure. The effects of copper and zinc are 

 
2 Unlike cadmium, lead and mercury, which have no biological function. 

a b 

c d 
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routinely evaluated in laboratory tests, most frequently to establish concentrations that are safe or 

lead to adverse effects, and these tests indicate that copper is more toxic than zinc (Table 2-1). 

 

Figure 2-3: Hormesis curve for essential trace metals, demonstrating low growth at very low 
concentrations, stimulation at moderate concentrations and a toxic response at higher concentrations.  

Table 2-1: Examples of copper and zinc toxicity data for survival of native New Zealand freshwater fish 
and macroinvertebrates.  The data are an inexhaustive collation from published and unpublished studies 
(Albert et al. 2021, Clearwater et al. 2014, Hickey et al. 2000, Hickey & Vickers 1992, Thompson et al. 2021, 
Thompson et al. 2019). 

Species Timeframe 
(duration of 
toxicity test) 

No effect concentration 
(NOEC), µg/L  

Concentration that 
affects 50% organisms 

in test (EC50), µg/L 

Copper    

Freshwater mussel (Echyridella menziesii) 24-hour 2.0 3.6 

Pond snail (Potamopyrgus antipodarum) 96-hour Not reported 17 

Water flea (Daphnia thomsoni)  48-hour 22 31 

Amphipod (Paracalliope fluviatilis) 96-hour Not reported 70 

Kōura (Paranephrops planifrons) 7-day 260 >300 

Mayfly (Deleatidium sp.) 96-hour Not reported 39 

Common bully (Gobiomorphus cotidianus) 96-hour 180 520 

Common bully (Gobiomorphus cotidianus) 10-day Not reported 125-1000 

Inanga (Galaxias maculatus) 96-hour 56 85 

Zinc    

Freshwater mussel (Echyridella menziesii) 24-hour 258 368 

Pond snail (Potamopyrgus antipodarum) 96-hour Not reported 530 

Water flea (Daphnia thomsoni)  48-hour 100 220 

Amphipod (Paracalliope fluviatilis) 96-hour Not reported 480 

Koura (Paranephrops planifrons) 7-day 430 >430 

Mayfly (Deleatidium sp.) 96-hour Not reported 9,000 

Common bully (Gobiomorphus cotidianus) 10-day Not reported 166-382 
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Field studies worldwide have demonstrated the toxic effects of metals in freshwater receiving 

environments, particularly at sites affected by mining or historical mining (e.g., Besser & Leib 2008, 

Hickey & Clements 1998). Within New Zealand, copper and zinc have been demonstrated to reduce 

the abundance and species richness of Ephemeroptera (mayflies), and taxon richness of Plecoptera 

(stoneflies), and Trichoptera (caddisflies), and total taxonomic richness (Hickey & Clements 1998, 

Hickey & Golding 2002). Metal exposure, though not specifically copper and zinc, have also reduced 

the density of some fish species, including native galaxids (Gray et al. 2016). The effect of metals on 

freshwater organisms can be evaluated to some extent using water quality guidelines (e.g., ANZG 

(2018), which are derived from laboratory-based toxicological assessments of individual species and 

individual metals similar to those in Table 2-1. 

In estuarine receiving environments, metals accumulate in sediment due to the physical and 

chemical processes that favour partitioning to solids, flocculation and deposition (Williamson & 

Wilcock 1994). They may have toxic effects on organisms residing on or within those sediments – 

primarily through dissolution in pore waters that are then taken up by biota, causing toxicity via the 

same mechanisms as water-based exposure (Burton 2010, Chapman et al. 1998). Similar to water 

testing, the effects of metals in sediment can be measured in laboratory tests (Burton 2010). 

However, due to difficulties in preparing sediments that replicate field-derived samples (in terms of 

metal binding and bioavailability) most laboratory tests use sediments collected from the field, which 

most often contain multiple metals at above background concentrations. This means that most 

sediment quality guidelines are derived from statistical relationships between metals in sediment 

and biological or ecological responses (Chapman et al. 1999). Sediment quality guideline values for 

copper and zinc are provided in Table 2-2 and demonstrate that copper is more toxic than zinc, with 

lower concentrations required to cause adverse effects. 

Table 2-2: Examples of copper and zinc sediment quality guidelines used internationally and within New 
Zealand.  Note that each of these values has used slightly different methods to develop the thresholds and the 
description of the guideline value is important when applying them. 

Source Guideline name Description Copper (mg/kg) Zinc (mg/kg) 

Sediment guidelines 
(Long et al. 1995) 

Effects range–low (ER-L) Low likelihood of effects below 
these values 

34 150 

Effects range-median (ER-M) High likelihood of effects (70-
90%) above these values 

270 410 

Florida Department of 
Environmental 
Protection Guidelines 
(MacDonald et al. 1996) 

Threshold effect level (TEL) Low likelihood of effects below 
these values 

18.7 124 

Probable effects level (PEL) Effects frequently occur above 
these values 

108 271 

Australia New Zealand 
guidelines (ANZG 2018) 

DGV Low likelihood of unacceptable 
effects below these values 

65 200 

GV-high Toxicity-related effects expected 270 410 

Auckland Regional 
Council guidelines 
(Auckland Regional 
Council 2004) 

ERC green to amber Low risk below this 19 124 

ERC amber to red Biological effects probable 34 150 

 

Increases in copper and zinc (and lead) within sediment are associated with changes in estuarine 

benthic communities, as demonstrated in numerous New Zealand studies (Fukunaga et al. 2011, 
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Hewitt et al. 2009, Thrush et al. 2008). Similar to their work with sediment, Thrush et al. (2008) 

developed statistical models that relate the abundance of specific taxa to copper, lead, zinc, mud 

content and coarse sediments. These relationships suggested there are species-specific responses, 

and relationships between stressors were not simple. For some organisms, stressor interactions were 

antagonistic, potentially demonstrating that organisms become adapted to stress (Thrush et al. 

2008). For other organisms, stressors showed synergistic interactions – suggesting that organisms 

that are stressed due to sub-optimal habitat (high mud content) have limited ability to tolerate an 

additional stressor such as increased copper concentrations. Most importantly, several studies in 

New Zealand have demonstrated changes in faunal communities at metal concentrations that are 

lower than most sediment quality guidelines (Hewitt et al. 2009, Hewitt & Ellis 2010).  

2.2 Other stressors in urban receiving environments 

2.2.1 Urban streams 

Urban streams are often highly modified environments impacted by many factors, collectively called 

the “urban stream syndrome” (Meyer et al. 2005, Walsh et al. 2005). Historically they may have been 

more valued as drains creating land suitable for development rather than for their ecosystem values. 

This has led to many urban waterways being straightened and, in some locations, stream banks lined 

with wood or concrete (see Figure 2-4) to reduce bank erosion while improving drainage and flow. 

This alters the water velocity and reduces habitat complexity for fish and macroinvertebrates. The 

high levels of impervious surfaces (e.g., roads, roofs and carparks) and the piping of water causes 

rapid delivery of rain water to streams, resulting in increased flashiness, and increasing peak flows, 

peak velocity and total water volume (Roy et al. 2005). In some locations, baseflows can decrease 

due to the reduction in water entering the stream via slow subsurface processes (Elliott et al. 2004, 

Roy et al. 2005). 

 

Figure 2-4: Lined streams in Ōtautahi City, demonstrating minimal habitat variability.  Left: Timber-lined 
section of Curlett Stream upstream of the motorway. Photo credit M. Flanagan (NIWA). Right: concrete-lined 
section of Sumner Stream at Scarborough Beach, photo from Allan et al. (2012). 

Compared to streams in undisturbed locations, there is often minimal riparian vegetation adjacent to 

urban streams. The lack of shade from tall trees elevates stream water temperature. Furthermore, 

this reduces the input of woody detritus, which provides both habitat and nutrients for 

macroinvertebrates and fish. Other aspects of water quality are affected by urbanisation. For 

example, dissolved oxygen concentrations can be low in streams with high temperatures, low flow 

velocities and low volumetric flow rates. Nutrient concentrations are also modified in urban streams, 
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due to disruption of natural biological processes, and as nutrients influence primary production, this 

can have consequent effects on periphyton, macroinvertebrates and fish. Contaminants deposited 

on or contained in impervious surfaces are delivered to streams through the piped systems, with 

minimal attenuation or removal unless stormwater treatment systems are incorporated. Many 

metals (other than copper and zinc) and organic contaminants can cause toxic effects on stream 

biota, either through their presence in the water column or when they deposit and accumulate in 

benthic sediment. 

The nature of urban waterways means that many stressors of instream communities covary, as they 

are caused by the change from pervious to impervious surfaces and the additional infrastructure 

(piping, channelisation) used to accommodate that change. Furthermore, urban stressors  may have  

synergistic, interactive effects. For example, hydrological alterations can influence water quality, 

particularly sediment transport, leading to a stream with both flashy flows and high deposited 

sediment cover, both of which reduce habitat suitability for some taxa.  

Although the effects of different stressors are known in a qualitative sense (e.g., in the direction of 

the effect, Figure 2-5), the impacts of multiple stressors makes it complicated to disentangle 

individual quantitative relationships between stressors and responses, including what the form of 

those relationships may be (e.g., linear, exponential, with or without thresholds (Larned & 

Schallenberg 2019)). Any assessment of the likely effect of reductions in sediment, copper and zinc 

contaminant loads (and in-stream concentrations) needs to be cognisant of the other influences on 

water quality and biological communities. That is, a reduction in sediment, copper and/or zinc may 

not necessarily lead to an increase in macroinvertebrate abundance or diversity, if other stressors 

(e.g., habitat factors) are limiting their abundance.  
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Figure 2-5: Conceptual model of how urbanisation affects stream ecosystems.  From Walsh et al. (2005). 

2.2.2 Urban estuaries  

Urbanisation leads to changes in multiple stressors in estuarine and coastal environments. These 

changes include changes in infrastructure (e.g., reclamation of coastal areas, construction of artificial 

structures such as sea walls, ports, groynes, breakwaters and wharves) (Freeman et al. 2019, 

Momota & Hosokawa 2021). These changes can lead in turn to loss of intertidal area and changes in 

habitat through loss of salt marsh and sea grass (Freeman et al. 2019). Sediment accumulation rates 

are also higher in urbanised estuaries, with estuaries changing from sand- to mud-dominated 

systems (Swales et al. 2020). 

As well as delivering sediment, copper and zinc, stormwater runoff is a significant source of other 

contaminants that can accumulate in coastal zones including organic contaminants and nutrients. 

Excess nutrients can promote macroalgal growth, and changes in algal species diversity, which may 

have consequent effects on macrofauna, through the food web or through smothering and changes 

to environmental conditions (e.g., creating low oxygen conditions). Organic contaminants may be 

toxic and lead to reduced growth or survival and changes in community structure (Depree & Ahrens 

2007). Furthermore, urban stressors may interact in multiplicative and non-linear ways (Ellis et al. 

2017; Clark et al. 2021). For example, Thrush et al. (2008) reported that heavy metals had a stronger 

effect on estuarine benthos at sites which also had higher mud content (i.e., mud to sand ratio). 

Nutrients interact with both metal loading and sediment to impact benthic macrofauna (Ellis et al. 

2017). This information suggests that, as in freshwater environments, the potential effect of reducing 

copper, zinc and sediment loads should not be assessed in isolation from the other stressors that 

influence ecological communities. 
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3 What is the knowledge base for Ōtautahi receiving 
environments? 

This section briefly reviews the data available for Ōtautahi freshwater and estuarine systems to 

either use, test or develop models to predict change in ecosystem response in relation to changes in 

stormwater copper, zinc and sediment loads. Further, key stressors currently influencing these 

ecosystems are investigated, through assessments of existing data, expert opinion and review of 

previous studies.  

3.1 What is expected to change with stormwater management in Ōtautahi? 

As described in the introduction section, CCC plan to reduce the loads of total suspended sediment, 

copper and zinc discharged through their stormwater network, through a mixture of improved 

stormwater management and source control. This is expected to reduce the concentrations of 

copper and zinc in the water column in the rivers, and within benthic sediments of rivers and 

estuaries, and to have consequent effects on the biological communities therein. 

However, many of the stormwater management methods that could be used by CCC to target 

reductions in sediment, copper and zinc loads can also influence other stressors (Table 3-1). For 

example, treatment methods that involve infiltration will also decrease concentrations of other 

contaminants, (e.g., nutrients3) and affect hydrological processes in streams (e.g., peak flows). On the 

other hand, source control methods, such as reductions in copper in brake pads, will only affect the 

contaminant being controlled. 

Overall, this means that whilst stormwater management methods may reduce sediment and metals 

(thus reducing deposited sediment and potential for aquatic toxicity), there are likely to be changes 

in other stressors, such as reductions in concentrations of nutrients, peak flow or water temperature. 

This may result in additional benefits to the biological communities. Therefore, the holistic effect of 

each of the management methods needs to be considered when predicting potential changes to 

stream and estuarine biological communities, and models to predict changes with reduced copper, 

zinc and sediment loads should have the capacity to include other contaminants or stressors. 

Likewise, while stormwater management methods can reduce inputs, they may not decrease the 

contaminants already present, such as metals bound up in deposited sediment. These are likely to 

remain unless the contaminated sediments are removed. Alterations to hydrology due to different 

stormwater management methods also have the potential to alter transport of existing sediment 

within the waterways. For example, stormwater management may reduce peak flows within a 

waterway below the threshold to transport deposited fine sediment downstream, leading to an 

increase in deposited fine sediment in the stream. Furthermore, the benefits of these methods 

require that each are designed and maintained appropriately. Consequently, whilst stormwater 

management may be beneficial for some stressors, there may also be unintended non-beneficial 

effects that need to be considered. 

  

 
3 Mitigation methods may also influence E. coli and other faecal indicator bacteria but as their presence does not affect ecological 
responses, these are not included here.  
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Table 3-1: Stormwater mitigation methods and their potential effect on water quality and quantity.  
Downward arrows indicate reductions in stormwater contaminant concentrations / flows (reductions in load 
only are indicated with “a”), upwards arrows indicate potential increase in contaminant concentrations / flows, 
arrows in both directions indicates it depends on the design and location, NC indicates no change expected, o 
indicates minor change only, ? indicates an absence of information to assess this. Note that these mitigation 
methods may also affect other contaminants. Appropriate design and maintenance of each mitigation is 
required to achieve these effects. 

    Water quality 
 

Water quantity 
 

Mitigation 
methods 

 

Cu & 
Zn 

TSS Nutrients Water 
temp-

erature 

Peak 
flow 

Total 
flow 

Ground-
water 

recharge 

Source 
control  

Roof replacement   NC NC NC NC NC NC 

Roof painting   NC NC NC NC NC NC 

  Brake pad changes  NC NC NC NC NC NC 

Non-
structural 

Increased catchpit 
clearouts 

   NC NC NC NC 

  Increased street 
sweeping 

   NC NC NC NC 

Stormwater 
treatment 
devices 

Wetlands    ?  o o 

Proprietary filtration 
devices 

   NC NC NC NC 

 Dry infiltration basins  a  a  a     

 Swales (wetland or 
dry) 

  ?  o o NC 

 Rain gardens  NC     o  

 Wet ponds    ?    

 Stormwater tree pit     o o o 

 Permable pavement o  o     

 Stormwater tank NC NC NC ?  NC NC 

 Green roofs NC ? ?    NC 

Other 
mitigation 
methods 

Waterway restoration ?  ?  NC NC  

  Waterway sediment 
removal 

?  ? NC NC NC NC 
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3.2 Freshwater 

3.2.1 What data do we have for Ōtautahi streams for use in models? 

CCC regularly monitor a range of variables relevant for modelling the effects of stormwater 

contaminant loads on in-stream ecology / biological communities including water quality, sediment 

quality and sedimentation (see map – Figure 3-1). A key aspect is the monitoring of copper, zinc and 

suspended sediment concentrations – this is undertaken at 45 sites across the city, with most 

monitored monthly since 2007. Water level data are currently collected at 11 sites across the city 

with level converted to flow at three sites only (1 in each of the Puharakekenui/Styx, Ōtākaro/Avon 

and Ōpāwaho/Heathcote rivers). There are also water level and flow data available from short-term 

studies undertaken by CCC between 2016-2018.  

Table 3-2: Key data available for Ōtautahi streams from monitoring by CCC (unless stated otherwise).  

Type Number of sites Frequency Duration  

Regular monitoring    

Water level 23 Every 5-mins Variety 

Flow 8 

17 

Every 5-mins 

Every 5-mins 

Ongoing 

Short-term studies 
of 1-2 years 

Water quality (typically 
baseflow sampling); variables 
include DO, temperature, 
nutrients, sediment, metals 

45 Monthly 2007-to date for 
many, 11 sites 
added in 2020 

Wet weather water quality; 
variables include DO, 
temperature, nutrients, 
sediment, metals 

28 2 events every 5 years 2019- ongoing* 

Wet weather water quality; 
variables include nutrients, 
sediment, metals 

Curletts Rd, Haytons 
Stream, Addington 

Brook 

Event-based sampling (e.g., 
hourly) 

Ad hoc: 2009 - 
ongoing 

Sediment quality (PSD (mud, 
sand, gravel), metals, TP, 
PAHs, TOC) 

46 Every 5 years 

Ad hoc 

2019 – ongoing, 

2003 - 2018 

Fine sediment (semi-
quantitative, 10 estimates of 
% cover using bathyscope) 

17 Monthly 2020 - ongoing 

In-stream habitat (range of 
quantitative and qualitative 
measures) 

62 sites  
 
 

4 sites 

Every 5 years, catchments 
on rotation 

 
Annually 

2019 – ongoing* 
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Type Number of sites Frequency Duration  

In-stream habitat (CREAS: 
bank/channel attributes, 
riparian vegetation) 

4061 Infrequent 2004 - ongoing 

Periphyton/macrophytes (as % 
cover/composition) 

62 sites  
 
 

4 sites 

Every 5 years, catchments 
on rotation 

 
Annually 

2019 – ongoing* 

Macroinvertebrates 
(identification to species level 
& calculation of indices) 

62 sites  
 

4 sites 

Every 5 years, catchments 
on rotation  

Annually 

2019 – ongoing* 

Kakahi (surveys incl. rapid 
surveys, presence / absence 
data; quantitative -> 
abundance, density (per m2), 
length) 

Ōtūkaikino, 
Ōpāwaho/Heathcote, 
Puharakekenui/Styx 

and Huritini/Halswell 
catchments; 

Ōtākaro/Avon and 
Cashmere Stream 

Every 2 years in Cashmere 
and every 5 years at 

Ōtākaro Botanic gardens 
site; ad hoc at other 

locations 

2009 – ongoing 

Fish (EFM/nets/traps; species 
presence/absence + CPUE) 

62 
 

4 sites 

Every 5 years, catchments 
on rotation, in March  

Annually 

2019 – ongoing* 

Mana whenua values  
General site assessment + CHI 

35 sites Every 5 years Two studies so far* 

Macroinvertebrates; 
periphyton and habitat 
assessments 

9 sites Annually 1999/2000† – 
ongoing; 

undertaken by 
Environment 
Canterbury 

Spatial information    

Stormwater infrastructure 
(pipes, outlets, devices) 

Spatial layer of city Not applicable Ongoing updates 

Stream physical data (channel 
bank lining; channel invert 
lining, watercourse) 

Spatial layer of city Not applicable Ongoing updates 

Inanga and trout spawning 
sites 

Spatial layer of sites Ad hoc Desktop review of 
any available data 

every five years 

Location of springs Spatial layer of sites Updated during CREAS 5-
yearly assessments 

Ongoing updates 

Note: * There is additional ad hoc/irregular monitoring prior to these dates. † Dates vary by site. 

 



 

26 Predicting effects of contaminant load reductions on biological communities: Feasibility study 

 

Ecological data are collected every 5 years at a total of 62 sites (Figure 3-1), with different 

catchments sampled each year. This includes collection of macroinvertebrates samples with various 

metrics calculated: the abundance of key taxa, indices such as Macroinvertebrate Community Index 

(MCI), its quantitative variant QMCI, taxa richness, EPT taxa richness and % EPT. In addition, 

Environment Canterbury monitor invertebrate ecology each summer at nine sites in these streams, 

with data dating back to 2004 for six of the sites. 

Taxa from the EPT (Ephemeroptera, Plecoptera and Trichoptera) orders are generally considered to 

be more sensitive to pollution than other orders of aquatic macroinvertebrates, and EPT abundance 

and richness are used as indicators of water quality. The Macroinvertebrate Community Index (MCI) 

as defined by Stark and Maxted (2007) is a measure of stream health based on the presence of 

macroinvertebrate taxa and their tolerance to organic pollution. The QMCI is the quantitative variant 

of the MCI and is calculated including information on the abundance of taxa, and not just their 

presence or absence. 

Fish data include species and abundance and indices such as taxa richness and total caught per net or 

trap (as Catch Per Unit Effort). Habitat data are also collected at the same time, including a range of 

quantitative and qualitative measures. Additional data are available throughout all five City 

catchment in the CREAS (Christchurch River Environment Assessment Survey) database, which 

includes bank and channel attributes, water velocity, presence and coverage of aquatic plants, and 

riparian vegetation (including composition). This survey assesses sites every 50 m along wadeable 

sections of waterways, providing a high resolution data set for the city. 
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Figure 3-1: Location of sites within the Ōtautahi urban area for monitoring surface water, instream 
sediment and aquatic ecology/habitat. Map does not include CREAS sites surveyed every 5 years. 

The spatial data available (through CCC’s GIS) includes layers of impervious surfaces, stormwater 

catchments, pipes, outlets and location of existing stormwater treatment devices. These layers can 

be used to provide metrics that indicate stormwater and land use pressures such as the proportion 

of catchment that is impervious, the total length of pipes in the catchment or the number of 

stormwater outlets upstream. 

In terms of cultural monitoring, there have been two “State of the Takiwā” assessments that 

included Ihutai; one in 2007 (Pauling et al. 2007) and a follow-up in 2012 (Lang et al. 2012). These 

included monitoring at 23 freshwater sites within the Ōpāwaho and Ōtākaro Rivers (24 in 2012). The 

scope included Takiwā site assessments which includes visual ranking assessments of site 

characteristics, access, pressures and suitability for harvesting mahinga kai; a Cultural Health 

Waterway Assessment to calculate the Cultural Health Index; and other qualitative and quantitative 

measurements of vegetation, macroinvertebrates, fish and birds. 

Sampling site type 
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Water level or flow data were available for 33 sites in Ōtautahi: 16 water level and 17 sites with flow 

data, Figure 3-2). Several of these sites are tidal and many were short-term monitoring sites set up 

for several years. A comparison of the data available between sites (Figure 3-3) indicates the 

different periods of monitoring – some for only a short period and several prior to 2018. This means 

that there are sites where the flow data does not align temporally with dates of macroinvertebrate 

sampling (particularly for the most recent ecological monitoring). 

  

Figure 3-2: Locations of water level recorders in Ōtautahi.  Recorders have been in operation over different 
time periods. See Figure 3-3 for record length available for each recorder from 2017. 
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Figure 3-3: Hydrological data available for Ōtautahi streams indicating different type (water level vs flow) and different time periods. Data obtained from Christchurch City 
Council. Dashed lines indicate the most consistent periods of time between sites over which we could generate hydrological metrics (see Section 5 for more details). 
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3.2.2 Which key metrics can we use to indicate biological community state in Ōtautahi 
freshwater communities? 

The consent condition uses the term “biological community” but does not specify what is meant by 

this. The definitions below were discussed and agreed on at a workshop with CCC staff, local 

freshwater ecologists and representatives from CCC’s technical ecology panel. 

In this project, we have defined the biological communities as “populations of different species living 

within a specified location in space and time." Individual taxa respond in different ways to 

environmental changes due to their different habitat and food preferences and tolerances to 

contaminants, among other factors. Univariate biological metrics are commonly used to simplify 

community compositional changes to one number, which makes communicating changes in 

community composition more efficient.  

Several univariate freshwater macroinvertebrate community metrics are commonly used in New 

Zealand, some of which might be applicable to Ōtautahi streams and/or urban environments (Table 

3-3; also see Clapcott et al. (2017) for a detailed review of the different macroinvertebrate metrics 

used in NZ). Key metrics for macroinvertebrates are the New Zealand macroinvertebrate community 

index (MCI), its quantitative variant (QMCI) and the proportion of sensitive EPT (Ephemeroptera, 

Plecoptera, and Trichoptera) taxa or individuals. Taxa from the EPT orders are generally considered 

to be more sensitive to organic pollution than other orders of aquatic invertebrates, so can give an 

indication of water quality. As described in section 3.2.1, MCI provides an indication of ecological 

condition within a waterway (Stark and Maxted 2007). Different tolerances scores are provided for 

taxa depending on whether the stream has a hard stoney bottom or is soft-bottomed, i.e., covered in 

fine sediment (Clapcott et al. 2017). Under the NPS-FM the soft-bottomed tolerance scores are 

required to be used in sites that are naturally soft-bottomed. The QMCI uses the same tolerance 

values but also includes abundance data and can be more sensitive to environmental changes than 

the presence-absence based MCI. QMCI, MCI and EPT metrics have been widely used during regular 

ecological monitoring in Ōtautahi streams and as of the NPS-FM (2020) are required to be monitored 

under the National Objectives Framework (MCI and QMCI as attributes; EPT as part of the average 

score per metric (ASPM)). The metrics generally respond to changes in organic pollution, nutrient 

pollution and physical habitat conditions but may also be sensitive to changes in metal 

concentrations.  

The inclusion of individual indicator taxa, such as those with high significance to mana whenua (e.g., 

watercress, the abundance of large tuna (eels), and the presence of wai kōura/kēkēwai and kākahi) 

was discussed during the workshop. However, it was also acknowledged that the latter species are 

very patchy in their abundance, and because they can be very long-lived, their presence does not 

necessarily indicate a healthy ecosystem.  

For fish, the IBI (indicator of biological integrity) metric was discussed, however there was some 

concern that there would be insufficient information to reliably calculate this index, given that fish 

are typically surveyed only once every 5 years and their presence can be patchy – related to flows 

and seasonal migration patterns. Furthermore, as the IBI is based only on presence/absence (not 

abundance) it may not be sufficiently sensitive to detect gradual improvements or declines 

(McDowall & Taylor 2000).  

Based on the workshop, and analyses of data availability the key metrics selected for developing 

models for freshwater ecosystems were the univariate metrics QMCI and EPT (either taxa richness or 

percentage of individuals present). Statistical modelling approaches that can include multivariate 
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(i.e., the response of multiple taxa) instead of univariate responses are discussed in Section 4.5.2, 

however, due to the relatively small number of sites sampled, the lack of temporal 

macroinvertebrate data, and common use of univariate metrics in freshwater monitoring we 

recommend proceeding with the selected univariate metrics. 

There are some considerations when using univariate metrics to indicate biological community state. 

Using one number to represent community state can make communicating changes in state simple 

and easier to interpret, i.e., one number either declines or increases. However, using metrics can 

make it difficult to link changes in their values with mechanistic causes. For example, two different 

community responses, caused by different stressors, can result in the same metric value – that is, 

increased abundance of tolerant species a and decreased abundance of sensitive species c; or 

increased abundance of tolerant species b and decreased abundance of sensitive species d. 

Univariate macroinvertebrate metrics such as the MCI and QMCI have been widely used in New 

Zealand to assess freshwater ecosystem health. Both are commonly correlated with native land 

cover (Clapcott et al. 2014, Death & Collier 2010) and broad gradients in nutrient enrichment, 

organic pollution and sedimentation (e.g., Clapcott & Goodwin 2014). However, causative 

relationships linking changes in MCI (and its variants) to variation in individual stressors can be 

difficult to identify where multiple stressors are present (Clapcott & Goodwin 2014, Clapcott et al. 

2017, Collier et al. 2014). More generally, using statistical models, which rely on correlation to infer 

causation, to identify the stressors causing degradation of macroinvertebrate communities based on 

univariate metrics is challenging, particularly where multiple correlated stressors are in effect, such 

as urban waterways.  

Table 3-3: Key metrics considered as indicators of the freshwater biological community for this project. 
Metrics shaded in green are considered most likely to be useful for developing models. 

Indicator Description Pros Cons 

Macroinvertebrate metrics 

MCI score 

Stark and Maxted (2007) 

 

Assigns tolerance values 
to different taxa, based 
on presence/absence 

Does not require 
abundance data 

Widely used in NZ, 
comparable across sites/ 

regions 

Responds to multiple 
stressors, but may not 

respond appropriately to 
metals 

Often not to species 
level 

QMCI score 

Stark and Maxted (2007) 

 

Quantitative version of 
MCI, incorporates 

abundance of each taxa 

 

Widely used in NZ, 
comparable across sites/ 

regions 

Responds to multiple 
stressors, but may not 

respond appropriately to 
metals 

Often not to species 
level 
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Indicator Description Pros Cons 

EPT taxa richness or 
Percent EPT 

 

Occurrence or percent 
abundance of sensitive: 

Ephemeroptera 
(mayflies) 

Plecoptera (stoneflies) 

Trichoptera (caddisflies) 

Responds strongly to 
degradation 

 

Responds to multiple 
stressors 

Often not to species 
level 

Sometimes pollution 
tolerant caddisflies 
included in score 

Can be naturally less 
abundant in some sites 

UCI or QUCI 

Suren et al. (1998) 

Urban community index, 
or quantitative urban 

community index 

Developed specifically 
for urban streams with a 
focus on habitat quality 

Has not been widely 
used or reported, scores 

would need to be 
derived from raw data 

ASPM (Collier 2008) Average score per metric 

Calculated from MCI, 
EPT richness and %EPT 

Developed to 
discriminate between 

reference sites and 
those influenced by 

urbanisation or pastoral 
development 

An NPS-FM attribute and 
therefore may be being 
measured and reported 

on in the future 

Has not yet been widely 
used or reported, scores 

would need to be 
derived from data 

Stressor specific metrics 
for deposited sediment 
and periphyton 
(Wagenhoff et al. 2018) 

Calculated as for MCI 
/QMCI using a unique 
set of tolerance scores 

developed separately for 
deposited sediment and 

periphyton 

Can be more sensitive to 
their target stressors 
than the MCI / QMCI 

Uses same taxa 
identification level as the 

MCI 

Scores only for 49 taxa 
so far, of which few may 

live in urban streams 

Macroinvertebrate or fish metrics 

Species richness / 
taxonomic richness 

Number of different taxa 
present 

Quantitative measure 

Simple to calculate 

Represents biodiversity 

Calculated and reported 
in CCC’s 5-yearly ecology 

monitoring reports 

Species replacement can 
result in change in 

community with no 
change in richness 

Sometimes more related 
to sampling effort, esp 

with occasional rare taxa 

Taxa abundance / total 
abundance 

The total number of 
individuals present 

Quantitative measure 

Simple to calculate 

Calculated and reported 
in CCC’s 5-yearly ecology 

monitoring reports 

Includes pollution 
tolerant taxa 

High abundance can be 
due to dominance by 

only a few taxa and can 
indicate poor conditions. 
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Indicator Description Pros Cons 

Indicator taxa or taxa of 
interest 

 

E.g., watercress, 
abundance of large tuna; 
kākahi & koura/kakawai 

Abundance or 
presence/absence of 
particularly sensitive 

taxa or taxa of interest 

 

Potential to link to 
specific stressors 

Relies on indicator taxa 
being naturally present 

Natural variation in 
abundance can result in 
high uncertainty in the 

measured data. 

For long-lived species 
(e.g., kākahi) presence 

may not be an indicator 
of high quality 
environments. 

Species distribution Probability of occurrence 
of species (individual or 

joint) based on 
environmental 

predictors 

Can be used to make 
predictions for non-

sampled sites 

Need to compare to 
expected distributions 

from comparable 
reference sites for 

context 

Not comparable across 
all sites 

 

Multivariate 
composition 

Presence/absence or 
relative abundance 

across all sites 

Can be 
observed/expected if 

reference communities 
are present for 

comparison 

Can compare entire 
communities across sites 

More complex model 
types required (e.g., 

ordination) 

Fish IBI 

Joy and Death (2004) 

Index of biotic integrity; 
expected and observed 

scores based on a 
combination of metrics 

related to native and 
invasive species 

Relates to species 
sensitive to degraded 
habitats (which could 

include urban habitats) 

May be insufficient 
sampling for reliable 

data 

Fish passage barriers 
may also affect presence 

of some fish species 

 

3.2.3 Data availability and suitability for use in existing and when developing predictive 
models 

In this section, the available data is assessed for its suitability for modelling. Having a broad range of 

data for potential stressors will help parameterise mechanistic models and/or build statistical models 

for Ōtautahi waterways. Further, statistical models should not be used to predict outside of the 

range of data that they were developed with. A range of predictor conditions is required for 

parameterising a model that predicts for new sites or new conditions (e.g., reduced stormwater 

contaminant loads). For example, when considering predicting macroinvertebrate community 

metrics under different levels of stormwater contaminant level in the future, the current dataset 

needs to include those contaminant levels. 
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CCC’s water quality and ecological monitoring data (as described in section 3.2.1, and provided to 

NIWA by CCC) are used in this section to assess the range of stressors and responses. Plots of the key 

stressors copper, zinc and total suspended sediment (TSS, Figure 3-4) indicate a relatively broad 

range in zinc concentrations from those well below water quality guidelines to site median 

concentrations that could be expected to have adverse effects on more than 20% of species present 

(i.e., exceeding the guideline for protection of 80% of species). Dissolved zinc concentrations ranged 

from ~1 µg/L at headwater sites to >20 µg/L at several urban sites (Figure 3-4). By contrast, median 

dissolved copper concentrations ranged from <0.5 µg/L at headwater sites to 5.5 µg/L at an urban 

site, with few sites exceeding the guideline value for protection of 99% of species (Figure 3-4). 

Median TSS concentrations were between 1 and 3 mg/L at many sites, with few sites exceeding the 

25 mg/L guideline value. There was also considerable temporal variation within sites, particularly for 

zinc and TSS. 

Other sediment-related stressors (measured only once, during macroinvertebrate sampling) have 

been measured across the entire range of 0 to 100% for fine sediment cover and stream substrate 

embeddedness (Figure 3-5). Shading, macrophyte and periphyton cover also demonstrated a broad 

range (Figure 3-6).  

The biological data (Figure 3-7) indicated some range in the MCI values between sites, however when 

comparing to the categories used in the NPS-FM NOF, the majority of sites were ranked below the 

national bottom line, Band D (or indicative of severe enrichment, Stark and Maxted (2007)), with only 

a few sites categorised as having moderate enrichment and none with mild to no enrichment. 

Similarly, for QMCI, most sites (70%) were ranked below the national bottom line (Band D), with 26% 

sites ranked in the C band (moderate enrichment) and <1% sites in the B band (mild enrichment). The 

percentage of the community that are sensitive EPT individuals was low at less than 10% for all sites. 

This is relatively common in urban waterways (Collier et al. 2009, Suren 2000). 

 

 

Figure 3-4: Copper, zinc and suspended solids concentrations at individual sites in Ōtautahi streams 
ordered by median concentration. Site labels on x-axis are site codes used by CCC. Data from monthly 
monitoring from January 2007 up to December 2021. This plot excludes all copper data prior to October 2016 
when laboratory detection limits were 1 µg/L and most samples were below detection. Data that are below 
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detection are plotted here at the detection limit (0.1 µg/L for dissolved copper, 0.1 and 1 µg/L for dissolved 
zinc, 3 and 5 mg/L for total suspended solids. Central marker indicates median value for each site. Boxes 
represent the range from 25th to 75th percentiles, whiskers from 1.5x inter-quartile range and small points 
indicate data outside 1.5 x IQR. Note log scale on y-axes for all three variables. Background shading for copper 
and zinc indicates comparison to ANZG (2018) guideline values (<99% protection shown in green, <95% in 
yellow, <90% in light orange, <80% in dark orange and >80% in red), not adjusted for hardness. Suspended 
solids compared to guideline value of 25 mg/L (Hayward et al. 2009). 

 

 

 

Figure 3-5: Sediment related stressor indices in Ōtautahi streams ordered by mean values for each site 
sampled for macroinvertebrate ecology.  Each dot represents a single site in the monitoring network. All data 
from latest of five-yearly monitoring (i.e., from 2018 to 2022, depending on catchment). 
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Figure 3-6: Macrophyte, periphyton, stream shading and bank modification in Ōtautahi streams ordered 
by mean values for each site sampled for macroinvertebrate ecology.  Each dot represents a single site in the 
monitoring network. All data from latest of five-yearly monitoring (i.e., from 2018 to 2022, depending on 
catchment). 
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Figure 3-7: MCI and EPT scores for Ōtautahi streams. Each dot represents a single site in the monitoring 
network.  Colour background for MCI and QMCI scores based on the NPS-FM numeric attributes (red indicates 
below the national bottom line, orange Band C, yellow Band B and green Band A). EPT scores calculated 
excluding pollution-tolerant caddisflies in the order Hydroptilidae. All scores from latest of five-yearly 
monitoring (i.e., from 2018 to 2022, depending on catchment). 

In terms of the number of sites that could be used to develop a model, there was a maximum of 71 

sites with macroinvertebrate sampling. However not all the important stressor variables have been 

measured at each site. For example, the regular water quality monitoring sites are not all co-located 

with ecological monitoring sites, and the water level / flow data are also infrequently co-located (see 

Figure 3-1 and Figure 3-2 for locations of each). Therefore, data sets are either reduced to the co-

located sites (which would drastically reduce the number of sites) or assumptions must be made - for 

example that the water quality at an upstream site is broadly representative of the water quality at a 

downstream ecological monitoring site. 

Furthermore, data have been collected at different temporal resolutions – macroinvertebrate and 

sediment quality sampling and habitat measurements are undertaken every 5 years (except for 

annual sampling at 5 sites only), water quality is sampled monthly and water levels are recorded at 

15-minute intervals. Most modelling methods will need the water quality and water level data to be 

summarised to specific indices – for example, median or 95th percentile dissolved zinc 

concentrations.  

If required and beneficial, the Ōtautahi data could be supplemented with data from other locations 

to build and test models. For example, macroinvertebrates are regularly sampled in wadeable 
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streams all over New Zealand (currently 995 sites across NZ4), including in other urban centres such 

as Auckland (9 sites), Wellington (6 sites), Tauranga, Hamilton and Nelson (each 3 sites) and others. 

Although methods used to sample, process and identify macroinvertebrates has varied between 

councils (Whitehead et al. 2022b), the MCI and percent EPT (if calculated) are comparable, although 

the related quantitative (QMCI, EPT abundance) or semi-quantitative metrics (SQMCI) may be less 

comparable due to the different collection and processing methods. Water quality data are also 

regularly collected throughout New Zealand (e.g., 510-845 sites depending on variable), including 

metals at 46 additional sites. However, it is not clear how many of these are co-located with 

macroinvertebrate sampling sites. Furthermore, although flow monitoring is undertaken at many 

locations, the sites are generally different to macroinvertebrate monitoring sites. Although this 

limitation can be alleviated by substituting modelled flows, the existing national scale hydrological 

models (e.g., NZWaM (Kees et al. 2022)) are unlikely to accurately represent flows within urban 

streams. 

3.2.4 What are the key stressors influencing Ōtautahi freshwater biological communities 
currently? 

Expert knowledge, such as used to identify the likely key stressors for Ōtautahi waterways (see 

below), is crucial to developing models that include those stressors, and their likely mechanisms of 

impact on biological communities. Comparing values for stressors against published thresholds (such 

as National Objectives Framework (NOF) attribute bands in the National Policy Statement for 

Freshwater Management, NPS-FM (New Zealand Government 2020), or known toxicity thresholds) 

can also assist in identifying parameters that are likely acting as stressors on the biological 

community.  

From expert opinion 

Conceptual models of the key stressors affecting the biological communities within Ōtautahi streams 

were developed during a workshop (Appendix A). These models were based on the conceptual model 

of Walsh et al. (2005) and refined based on the experience of ecologists working in Ōtautahi streams. 

The model for macroinvertebrate communities shows the stressors considered to be of highest 

importance to these streams, as depicted by the thickness of the arrows in Figure 3-8. Suspended 

sediment concentration, deposited sediment, movement barriers and the presence of source 

populations were identified as the most important stressors directly influencing macroinvertebrate 

communities. Nutrient concentrations were judged to be very important to algae and periphyton, 

though the importance of these on macroinvertebrates was considered to be less significant than the 

stressors listed above. Flow-related stressors were not considered to be of high importance in 

Ōtautahi streams (compared to other locations), due to the spring-fed nature of these streams which 

provides a constant baseflow. Despite copper and zinc concentrations being two of the three 

contaminants that are the focus of stormwater contaminant load reductions by CCC, they were not 

considered by the ecological panel to be key stressors in Ōtautahi streams. This may be because 

there is currently limited evidence available from field studies for the adverse effects of copper and 

zinc in urban streams and comparatively more evidence nationwide for the effects of sediment and 

nutrients on ecological communities. 

 
4 Lawa.org.nz 
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Figure 3-8: Conceptual model of how urbanisation affects Ōtautahi stream macroinvertebrates.  Adapted 
from Walsh et al. (2005) by expert panel. Thickness of arrow indicates the perceived importance of 
relationship; arrow colour relates to stressor group; thin black arrows demonstrate interactions between 
stressors. 

From monitoring data 

A comparison of several different indicators measured in Ōtautahi streams to thresholds (see 

Appendix B for details of the thresholds used) provides some indication of possible key stressors 

(Figure 3-9). This suggests that lack of shade, poor substrate, fine sediment cover and high metal 

concentrations could be key stressors, along with nutrient concentrations that favour excess 

periphyton growth. Note that there are contrasts between this assessment and that of the ecological 

panel in the workshop – most obviously in the inclusion of dissolved zinc as a potential stressor. 

 



 

40 Predicting effects of contaminant load reductions on biological communities: Feasibility study 

 

 

Figure 3-9: Comparison of various stressors (based on CCC monitoring data) to thresholds.  Proportion of 
stream sites within different stressors bands based on a variety of thresholds related to ecological health 
(including toxicity and periphyton growth); class A indicates “high quality” - low contaminant concentrations, 
low levels of stressors whereas class E indicates “poor quality” – high contaminant concentrations and high 
levels of stressors. See Appendix B for details of the thresholds used and the statistics used for comparison. 

Analysis of hydrological data indicates that some streams do demonstrate more “flashy” hydrographs 

than others – likely a response to the amount of imperviousness in the catchment and the size of the 

stream (Figure 3-10). This indicates that hydrology may be an important stressor in some streams 

(those with flashy hydrographs) but not others, and therefore ideal modelling methods would be 

able to account for site-specific differences in potential stressors, including hydrology.  
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Figure 3-10: Hydrographs for Ōpāwaho/Heathcote River and Horners Drain, demonstrating increased 
“flashiness” at Horners Drain, associated with the higher proportion of impervious surface in the upstream 
catchment. Flow data from March to October 2021, mean daily flows plotted. Data obtained from Christchurch 
City Council. 

Simple univariate relationships between the key stressors of suspended solids, dissolved copper and 

zinc, and deposited fine sediment, and three biological metrics (EPT taxa richness, QMCI and MCI) 

suggest that these stressors could indeed be influencing biological communities in Ōtautahi streams 

(Figure 3-11). Higher suspended solids and metals are associated with lower EPT taxa richness and 

lower MCI scores; and lower concentrations are associated with higher scores. This pattern is less 

pronounced for QMCI scores. Similarly, highest scores for all biological metrics were associated with 

low median dissolved zinc concentrations, and lower scores were associated with higher zinc (and 

copper) concentrations. On the other hand, there does not appear to be an association between 

deposited fine sediment and either EPT taxa, QMCI or MCI. Similar patterns are present when 

comparing the 95th percentile statistics for suspended solids, copper and zinc (not shown).  

There are however some sites with low suspended solids and/or metal concentrations that have low 

EPT and/or MCI. This suggests other stressors influence the biological communities in these streams 

(see Figure 3-12). In such locations, reductions in contaminant loads and concentrations may have 

little effect. Furthermore, what is not clear from these univariate figures is whether there are other 

stressors that co-occur at the same locations which are in fact causing the observable reduction in 

biological diversity. Figure 3-13 demonstrates that some stressors are correlated, particularly for the 

water quality variables – sites where metals are high (compared to other sites) also tend to have 

higher ammonia and DRP concentrations and higher turbidity.  
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In addition, consistent differences in both biological metric and predictor values between catchments 

may reduce the chance of detecting statistically significant or meaningful relationships between 

stressors and metrics at larger scales. For example, the Puharakekenui/Styx and Otukaikino 

catchments, which are less impacted by urbanisation than other catchments, generally show the 

highest macroinvertebrate metrics scores, but are also associated with consistently lower 

concentrations of metals and suspended sediment than other catchments (Figure 3-11). The 

hydrological connection between sites with a catchment means sites within a catchment are likely to 

be more similar to each other than to sites in another catchment. To meet the assumption of 

independence between sampling sites that is required for many statistical models, a random term for 

catchment, that explains some of this variation, will be required. However, because several of the 

predictor variables (e.g., metals and suspended sediment) show little variation within some 

catchments (i.e., all sites in the Puharakekenui/Styx and Otukaikino catchments have low values) 

much of the relationship between stressors and metrics is likely to be explained by differences 

between catchments (the random term), potentially resulting in minimal remaining variation in 

response metrics explained by these stressors (i.e., lower ability to detect a significant fixed effect of 

the stressor on the metrics).  

Statistical modelling techniques such as generalised linear models, GAMS or random forests (see 

section 4.5) could be used to create models that identify the predictor variables (potential stressors) 

with the highest ‘importance’ or strongest correlation with the biological response variables for 

Ōtautahi waterways. Such methods could identify whether any of the variables mitigated by 

stormwater management are ‘highly important’ predictors of any of the biological responses. These 

methods can also output graphs of the relationship between individual predictor variables and the 

response when all other predictors are held at a constant. These relationships can be linear, or non-

linear with various levels of complexity. Correlations between potential stressors and appropriate 

random effects to meet model assumptions would need to be considered when interpreting the 

output of these models. 
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Figure 3-11: Relationship between median suspended solids, copper and zinc concentrations and biological metrics in Ōtautahi streams.  Median concentrations from water 
quality data collected from 2017 to 2021. Deposited fine sediment and biological metric scores are from latest year of monitoring, which depends on the stream catchment. 
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Figure 3-12: Heat map demonstrating stressor variation between sites (represented by rows) ordered by high to 
low QMCI (y axis). Different colours represent different percentile values for the data between sites. Dark green 
indicates the sites with the lowest percentile for that stressor, yellow represents the median and dark red the highest 
percentile for that site in the data set. Red values do not imply exceedance of thresholds for biological effects. 
Individual sites are rows.  
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Figure 3-13: Scatterplot matrix indicating some correlations between stressors in Ōtautahi streams. Stressor variable names provided in diagonal boxes in centre, with 
histograms showing the spread of data. Upper right panel indicates correlations between each variable, points are coloured by stream catchment. Pearson correlation (R2) values 
provided in lower left panel. Plot indicates correlations between stream embeddedness and fine sediment cover; dissolved zinc and dissolved copper; dissolved zinc and 
ammonical-N; ammoniacal-N and DRP. Water quality variables were log-transformed prior to inclusion. 
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3.3 Ihutai 

3.3.1 Estuarine data 

CCC and Environment Canterbury jointly monitor Ihutai under an agreement under the “Healthy 

Estuary & Rivers of the City” programme. This includes monitoring of water quality, sediment quality, 

macroalgal, macrofaunal and fish communities (Table 3-4). Sediment particle size and quality, 

macrofauna and macroalgae have been sampled annually (except sediment quality) at 4 to 5 estuary 

sites and 2 river mouth sites, though monitoring at the river sites ceased in 2021. Sediment quality 

was sampled at those sites approximately every 4-5 years and at 5 additional sites in at other times 

between 2010 and 2022. 

There have also been many research studies in Ihutai, including student projects focussing on 

different aspects, such as microalgal communities (Malakhov 2019). A large research study focused 

on the effects of the wastewater diversion and the earthquakes (Barr et al. 2020, Zeldis et al. 2020), 

from which additional information on water/sediment quality and faunal communities is available. 

The ecology of Ihutai, focussing on macroinvertebrate fauna, has been studied periodically since the 

1960s, as described in several reports from the 1970s to 2000s (Knox 1992, Knox & Kilner 1973, 

Maclaren & Marsden 2005, Marsden 1998). There were also several studies (Deely 1991, Millhouse 

1977, Robb 1988) that measured the sediment quality of the estuary, with samples collected at 

multiple locations around the estuary and analysed for copper, lead, zinc and other metals. These 

reports provide information on the macrofauna and contaminants that were present in the estuary 

prior to the regular monitoring that started in 2010, after the diversion of the wastewater discharge. 

In terms of cultural monitoring, there have been two “State of the Takiwā” assessments that 

included Ihutai; one in 2007 (Pauling et al. 2007) and a follow-up in 2012 (Lang et al. 2012). This 

included monitoring at 5 sites around the estuary and its mouth. The scope included Takiwā site 

assessments which includes visual ranking assessments of site characteristics, access, pressures and 

suitability for harvesting mahinga kai; as well as quantitative measurements of vegetation, fish and 

birds. 

Table 3-4: Monitoring that has been undertaken in Ihutai by CCC and Environment Canterbury (ECan).  

Type Number 
of sites 

Frequency Duration Agency  
responsible 

Comments 

Water quality 10 Monthly 2007-to date ECan Monitoring at one site 
stopped in 2014 

Sediment particle size (% 
mud) 

4-6 Annually 2010- to 
date, plus 

some ad hoc 
prior 

CCC Some changes in sites 
over monitoring period 

Sediment quality 
(copper, lead, zinc, other 
metals, PAHs) 

6 

4-6 

3-5 yearly 

3-5 yearly 

2007-to date 

2010- to 
date 

CCC 

ECan 

Some changes in sites 
over monitoring 
period. Sites and 

methods the same 
between surveys 



 

Predicting effects of contaminant load reductions on biological communities: Feasibility study  47 

 

Type Number 
of sites 

Frequency Duration Agency  
responsible 

Comments 

Macrofaunal 
communities (epifauna + 
infauna) 

4-6 

 

Annually 2010- to 
date 

 

CCC Some changes in sites 
over monitoring period 

Macroalgae and seagrass 
cover 

4-6 Annually 2010- to 
date 

CCC Some changes in sites 
over monitoring period 

Broadscale mapping of 
macroalgae and seagrass 

Whole of 
estuary 

Approx. 
five-yearly 

2001-
ongoing 

ECan Slight changes in sites 
and methods post-

2015 

Fish surveys 12-13 Semi-
annually 

2005-2007, 
2010-2011, 
2013, 2015 

CCC Sites and methods 
generally the same 
between surveys 

Cultural monitoring, 
including visual/cultural 
assessments and fish / 
mahinga kai surveys 

5 Twice 2007, 2012 CCC Sites and methods the 
same between surveys 
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Figure 3-14: Location of water quality, sediment quality and biota monitoring sites in Ihutai Estuary.  
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Figure 3-15: Maps of macroalgal cover in Ihutai.  Image from Bolton-Ritchie et al. (2018). 

The temporal and spatial resolution of the regular monitoring undertaken by CCC and ECan 

(summarised in Table 3-4) is not likely to be high enough to develop any statistical models for Ihutai. 

There may however, be sufficient data to use existing models (reviewed in section 4.3), depending on 

those model requirements. The available data include the factors that are expected to be most 

important in influencing macrofauna (water quality, sediment quality, macroalgae). Importantly, all 

variables have been collected at the same or very nearby locations, and in many cases at the same 

time (e.g., sediment quality data collected at the same time as macrofauna data). This should reduce 

uncertainty in using the data for predictions. Furthermore, the data collected between 1960s and 

2000 may also be useful in evaluating the model’s accuracy of predictions with different input data.  
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3.3.2 What are the key stressors in Ihutai? 

Ihutai/Avon-Heathcote Estuary has historically been affected by the discharge from the Ōtautahi 

wastewater treatment plant, which delivered excess nutrients to the estuary. This resulted in blooms 

of nuisance macroalgal species including sea lettuce (Ulva sp.) and red seaweed (Agarophyton 

chilense5) and abundant benthic microalgal films (Zeldis et al. 2020). This growth both displaced the 

existing sea grass (Zostera muelleri) and affected the macrofaunal communities with reduced 

diversity at sites most affected by the discharge and eutrophication (Barr et al. 2012, Bolton-Ritchie 

& Main 2005, Zeldis et al. 2011).  

Nutrients delivered to Ihutai have decreased substantially since the diversion of Ōtautahi’s 

wastewater treatment plant discharge, although areas with high macroalgal growth remain (Bolton-

Ritchie 2020). This is thought to be attributable to continued nutrient inputs to the estuary 

(potentially via the Ōtākaro/Avon and Ōpāwaho/Heathcote Rivers) and/or changes in water 

temperature (Bolton-Ritchie 2020, Tait et al. 2020) as higher summer temperatures increase growth, 

whilst higher winter temperatures decrease the seasonal die-off (Tait et al. 2020). Trophic indicators 

including organic carbon and nitrogen in sediment, indicate enrichment at all sites, particularly the 

Ōtākaro/Avon River mouth, and increasing enrichment at Plover Street and Pleasant Point. Water 

column chlorophyll a, benthic chlorophyll a and macroalgal growth at various sites also indicate the 

enriched state of the estuary (Berthelsen et al. 2022). 

Metal concentrations in the sediments are low relative to other urbanised estuaries around New 

Zealand (Stats NZ 2019), and are consistently below sediment quality guidelines for effects on 

macrofauna (ANZG 2018). There is however variation around the estuary, with higher concentrations 

of lead and zinc typically higher close to the river mouths (Bolton-Ritchie 2015b, Robb 1988). At 

these sites, concentrations periodically exceed more conservative guidelines ((Hewitt et al. 2009, 

ARC 2004) based on changes in benthic community structure (Figure 3-16). 

Most sites in Ihutai are muddy: the sediments have a high proportion of grains <63 µm in size. This is 

particularly true around the Ōtākaro/Avon and Ōpāwaho/Heathcote River mouths. The proportion of 

mud in sediment has also increased over time at the Pleasant Point Jetty and Plover Street sites 

(Berthelsen et al. 2022) and is now around 25% at both sites. High mud content at many sites is 

reflected in those infauna communities, characterised by mud tolerant species and mud BHM scores 

of moderate to very high impact (Berthelsen et al. 2022). 

A key challenge will be to assess the ecological effects of reductions in fine sediment and metals, 

amongst the other key stressors of nutrients and eutrophication. The data currently available does 

not provide strong evidence for relationships between mud, copper or zinc content in the sediments 

and biological indices such as the number of taxa (Figure 3-17). There is considerable variation in the 

number of taxa at low metal concentrations and mud content, and there are few data  for this 

analysis. Inclusion of data from previous years of monitoring may provide additional evidence for 

relationships. 

 

 
5 Previously referred to as Gracilaria sp. 
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Figure 3-16: Comparison of copper, lead and zinc concentrations in sediments to thresholds derived by 
Hewitt et al. (2009) (fECs, shown in yellow) and ARC (2004) (ERC-green, shown in orange).  Metal 
concentration data from ECan.  
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Figure 3-17: Relationship between the number of benthic macrofaunal taxa per core and mud content / 
metal concentrations in sediment in Ihutai.  Median values are from faunal and mud data collected from 2016 
to 2021; metal concentrations median data from 2016 & 2021 only. Cores are 130 mm diameter by 150 mm 
deep. 
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4 Ecological response modelling 

4.1 Introduction 

The term ‘model’ can apply to many methods that assist in understanding how changes in 

environmental factors (including stressors) result in, or are associated with, changes in water quality 

and biological communities. This includes conceptual models, statistical correlative models and 

mechanistic, process-based models. A conceptual model indicates the expected relationships 

between stressors and ecological effects. For example, Walsh et al. (2005) provides a conceptual 

model of the mechanisms of change in freshwater ecosystems due to urbanisation. Statistical models 

use data to derive correlative relationships between explanatory and response factors and can 

provide an understanding of the strength of those relationships. However, they are generally not 

capable of distinguishing between indirect and direct effects (though structured equation models, 

SEMs, can do this to some extent). Statistical models can only be applied with confidence within the 

range of data used to develop the models, while mechanistic models can be used to predict outside 

of the range of observations. Mechanistic models draw on ecological theory and prior knowledge of 

species (i.e., traits) to parameterize mathematical equations describing known ecological processes, 

such as growth, respiration, and mortality. They use mathematical relationships and specific 

parameters to describe the system and are generally capable of distinguishing amongst these effects, 

depending on how they are parameterised.  

Table 4-1: Categories of mathematical models. Adapted from Munson (2004). 

Type 

Mechanistic 
 

Mathematical descriptions based on theory 

Empirical 
 

Based on data analysis 

Time Factor 

Dynamic 
 

Describe or predict system behaviour over 
time 

Static or steady-state 
 

Time-independent  

Treatment of Data 
Uncertainty and 
Variability 

Stochastic 
 

Include variability/uncertainty 

Deterministic 
 

Do not address data variability 

 

This section outlines a variety of modelling approaches that have been used in New Zealand or 

internationally to model the effects of various stressors on biological communities. This includes 

existing models (which we term here “off-the-shelf” models) that have been specifically developed 

for urban water bodies, specifically developed for estuarine systems in New Zealand, or more generic 

methods that can be used to develop a model (or models) specifically for Ōtautahi. 

For each of the models reviewed, we include a brief summary of the model, the types of data needed 

to run or develop that model and the sorts of processes that can be included, and relevance to 

Christchurch stormwater and waterway management. 
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4.2 Modelling receiving environment metal concentrations 

Predicting the ecological responses in Ōtautahi’s streams and estuary requires an understanding (or 

prediction) of how the receiving environment metal concentrations will change with a change in the 

contaminant loads (copper, zinc, sediment) delivered via stormwater.  

There are a large number of models available to do this within freshwater – the review of these is 

outside the scope of this project and included in a different CCC project. We have however included 

here some brief discussion of methods to address this issue within the estuarine receiving 

environment. 

4.2.1 Estuarine bed sediments 

There are a number of hydrodynamic and sediment transport models that predict the accumulation 

in estuaries of sediments and metals delivered from the land. These include Delft3D, DHI-models and 

ROMS6: all of which are computationally intensive to set up and run. NIWA has already implemented 

a Delft3D model of Ihutai to understand salinity and nutrient mixing in the estuary (Measures & Bind 

2013), however this model does not currently include sediment transport or deposition. Extending 

the model would take considerable effort and likely also require field studies (for example to 

understand wave-driven resuspension).  

An alternative could be the Urban Stormwater Contaminants (USC) model which was originally 

devised as a spreadsheet model (Green 2008). This model takes the predicted loads of sediment and 

metals and calculates the rate of deposition in an estuary. The USC-3 version of this model simulates 

these predictions on the daily or event- basis, however the model has been upscaled to an annual 

model (USC-4), which runs significantly faster (Moores et al. 2012). This model would be of an 

appropriate scale for connecting to an ecological health model as described in section 4.4 – a more 

sophisticated model is unnecessary given the ecological health models are designed for 

understanding direction and scale of changes in ecosystems, rather than exact predictions. The 

inputs required for the USC-4 include the current bed sediment metal concentrations and mud 

content, the depth of the mixing layer, the diameter of particles sized < and > 63 µm, the area of the 

estuary and the proportion over which sediment deposition occurs. Some of these inputs can be 

obtained through measurements in the field, through previous models that have been used in Ihutai, 

or through expert judgement. 

4.3 “Off-the-shelf” models for freshwater 

4.3.1 UPSW DSS Bayesian Network 

NIWA’s Urban Planning to Sustain Waterbodies research programme (UPSW) developed a decision 

support system (DSS) to aid in understanding the potential effects of different forms of urban 

development (traditional / business as usual versus water sensitive urban design) and different types 

of mitigation (stormwater treatment, riparian planting) on stream (and estuary) health, as measured 

through indicators of water quality, hydrology, riparian quality, habitat quality, aquatic plants, 

macroinvertebrate communities and fish. In this decision support system, the model is run multiple 

times with changing inputs to provide a timeline of predictions, typically every 5 to 10 years.  

The freshwater indicator scores are derived through a series of Bayesian Networks (also known as 

Bayesian Belief Networks, or Belief Networks) which provide a framework for graphically 

 
6 https://www.myroms.org/ 
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representing causal relationships between variables and for quantifying the strength of these 

relationships using conditional probabilities. In these networks (e.g., Figure 4-1), the conditional 

probabilities were derived from a mixture of existing empirical relationships where available, and 

expert judgement where data were not available.  

 

Figure 4-1: Bayesian network model for macroinvertebrates used within the UPSW DSS.  Purple nodes are 
inputs from existing data; green nodes are defined by model users; and blue nodes are calculated within other 
BNs within the DSS. Figure from Gadd and Storey (2012). 

The response variable is a “macroinvertebrate community score” which takes 5 discrete states (from 

low to high) based on the four parent nodes of riparian condition, in-stream habitat, hydrology and 

water quality. These parent nodes are combined according to a “limiting factor” approach – that is, a 

poor score in any one variable will result in a poor macroinvertebrate score. One clear limitation of 

this model is its minimal validation, particularly within Canterbury. The relationships between 

different nodes may need to be updated, based on relationships specific to Ōtautahi streams. Further 

as the model was developed around 10 years ago, it may need to be updated based on new 

information and knowledge around the effects of stressors on macroinvertebrates, given the recent 

work undertaken in NZ (e.g., Franklin et al. 2019, Wagenhoff et al. 2017). Although there is no 

obvious way to relate the “macroinvertebrate score” to an MCI or QMCI score or EPT index, it does 

provide both a qualitative rating (e.g., low, medium, high) and a quantitative measure that can be 

used to rank sites. As the model does include metals, habitat stressors and predicts 

macroinvertebrates, there is potential for use as is, or in an adapted form, for CCC.  

4.3.2 Aquatox 

AQUATOX7 is an ecosystem model that includes aquatic plants, macroinvertebrates and fish. It is a 

mechanistic (process-based) model that simulates contaminant fate and transport and ecological 

effects in aquatic ecosystems (steams, ponds, lakes, estuaries, and experimental enclosures). As a 

mechanistic model, it has the potential to establish causal links between chemical water quality and 

biological response and aquatic life uses. Although the model includes both lethal and sublethal 

toxicity, this is limited to organic toxicants and ammonia – the model does not include metals. The 

model does enable the evaluation of multiple stressor scenarios, including nutrient and organic 

 
7 https://www.epa.gov/ceam/aquatox 
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matter loads, flow regime, herbicides, suspended sediments and light. However, it does not include 

habitat-related factors that may also be limiting biological communities within urban streams. 

4.3.3 WHATIF 

WHATIF (Watershed Health Assessment Tools Investigating Fisheries8) is a tool to assess the health of 

watersheds and streams, with an emphasis on fish communities in the Mid-Atlantic Highland region 

of the United States. It includes hydrologic and stream geometry calculators, fish assemblage 

predictors, a fish habitat suitability calculator, macroinvertebrate biodiversity calculators (including 

EPT taxa) and models to predict stream biomass. The model is designed to examine causes of 

impairment (e.g., poor fish communities) and predict ecological outcomes of habitat alteration and 

fisheries management actions. This suggests some suitability for the needs of CCC specifically around 

the prediction of habitat alteration on macroinvertebrates and fish; however again, this model does 

not include metals. Furthermore, having been developed for the US, the relationships between 

habitat variables and macroinvertebrate indices (i.e., EPT index), which are based on multiple logistic 

regression models, may need to be refined for New Zealand and/or Ōtautahi conditions.  

4.3.4 WASP 

WASP (Water Quality Analysis Simulation Program9) is a mechanistic water quality model developed 

by the US EPA for aquatic systems, including both the water column and the underlying benthos. It is 

a continuous simulation model, predicting water quality through time under different conditions, 

which means it can provide an indication of how long it would take a waterbody to respond to a 

change in management conditions and it can indicate duration and frequency of water quality 

conditions including guideline exceedance. Metals are included in the model, but this is limited to 

metal fate – distribution of the metals between the water column and benthic sediment. 

Furthermore, although this model includes predictions of effects of nutrients on periphyton, 

phytoplankton and macroalgae, it does not include macroinvertebrates. These issues make the 

model unsuitable for the CCC modelling task. 

4.3.5 Streambugs 

Streambugs10 is a mechanistic food web model developed by researchers at Eawag (Swiss Federal 

Institute of Aquatic Science and Technology, Schuwirth and Reichert 2013). It uses differential 

equations to describe the growth, respiration, and mortality of macroinvertebrates based on 

environmental conditions and species’ traits (Paillex et al. 2017). Although the model does refer to 

the presence of contaminants, it does not include metals explicitly. Furthermore, as it was developed 

overseas, and for overseas macroinvertebrate species, it would need to be tested and parameters 

updated with New Zealand species-specific information (when available). Based on the effort 

required to do the latter, and that the model scope excludes metals, we do not consider this 

approach useful for the CCC task. 

4.3.6 Summary of existing models 

Each of the models reviewed are based on mechanistic understanding of the effects of water quality 

on organisms (Table 4-2). However, only the UPSW BN and WASP models include metals as a water 

 
8 https://www.epa.gov/ceam/whatif-watershed-health-assessment-tools-investigating-fisheries 
9 https://www.epa.gov/ceam/water-quality-analysis-simulation-program-wasp 
10 https://www.eawag.ch/en/department/siam/projects/streambugs/ 
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quality stressor. Of these, the WASP model does not simulate effects on macroinvertebrates. This 

suggests the only useful option for CCC’s purposes is the UPSW BN model. 
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Table 4-2: Summary of the existing models that could be used to model impacts of metal and sediment concentrations in Ōtautahi streams.   

Factors UPSW BBN Aquatox WHATIF WASP Streambugs 

Scope (e.g., whether such methods are suited to including all the factors of importance). 

Toxicity due to 
metals 

Yes No Not explicitly Yes No 

Habitat factors Yes No Yes No Yes 

Macroinvertebrates Yes Yes Yes No Yes 

Fish Yes Yes Yes No No 

Applicable to NZ 
conditions 

Yes No No, EPT taxa data would 
need to be refined for NZ 

No No, would need parameterising for 
NZ taxa 

Spatial and temporal resolution 

Temporal Predicts at a single point in 
time 

No No Yes, continuous 
simulation, can 

consider lags 

No 

Spatial scale Stream/sub-catchment level 
predictions 

River segment, may be 
linked 

Site, but currently set up 
only for regions of the US 

Stream reach / site Site 

Information required to run 

Inputs Requires information on 
habitat and water quality 

variables, flow metrics, 
riparian data. 

Information on stressors can 

be derived from monitoring 

datasets and/or from expert 

opinion. 

Sediment, nutrient and 
organic loads, inflows, 
temperature, biomass 

estimates 

Data on stream substrate, 
catchment area, slope, 

road and population 
density 

Primarily related to 
nutrient 

concentrations 

Environmental conditions including 
current regime, water temperature, 
light intensity, leaf litter, presence 

of pollution 

Ease of use and understanding 
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Factors UPSW BBN Aquatox WHATIF WASP Streambugs 

Outputs Provides scores for indicators 
(not a continuous variable) 

% EPT, primary production 
measures, trophic state 

indices 

Quantitative measure of 
EPT taxa 

Macroalgal density Food webs and probabilities of taxa 
presence 

Availability  NIWA-IP, available through 
research scientists 

Freely available via US EPA Freely available via US 
EPA 

Freely available via 
US EPA 

Freely available as an R package via 
CRAN 
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4.4 “Off-the-shelf” models for estuaries 

Three modelling approaches that may be of use in the Ihutai context are reviewed in this section. 

These models have all been developed based on data and information from New Zealand estuaries 

and have been validated against multiple estuaries throughout the country. This means they have 

potential to be applied to Ihutai without further development. Each modelling approach has 

different data requirements and modelling applications/strengths which are described below and 

summarised in Table 4-3.  

4.4.1 Estuarine Bayesian Network (BN) 

Background 

The estuarine BN was developed by NIWA for the Parliamentary Commissioner to the Environment 

to inform multiple stressor management in Aotearoa (Bulmer et al. 2022a, Bulmer et al. 2019). The 

BN model illustrates how four common stressors impact estuarine health and function (Figure 4-2). 

The model reflects expert opinion using a probabilistic framework, which enables uncertainty and 

complexity to be accounted for in model outputs and management decisions. The model illustrates 

that the impact of one stressor is conditional on the state of other stressors; demonstrates non-

linear responses of ecosystem components to stress; and illustrates how the baseline conditions of 

an estuary determine responses to further stress.  

Bayesian Network models are useful as they can integrate a combination of empirical data and 

expert derived information that have been collected for multiple purposes, bridging the gap 

between quantitative and qualitative knowledge systems and facilitating their use in areas where 

underpinning data may be lacking (Gladstone-Gallagher et al. 2019). This type of expert driven 

probabilistic approach has significant advantages for informing management decisions in complex 

systems where there is incomplete knowledge or information. For example, multiple stressors have 

the capacity to cause sudden, unexpected non-linear shifts, or tipping points, in ecosystem function 

(Côté et al. 2016, Gunderson et al. 2016, Hewitt et al. 2016, Thrush et al. 2014). By applying the 

estuarine BN to explore these impacts, multiple potential conditional outcomes are displayed and 

considered. This differs from many other modelling approaches where a single likely outcome ± 

error is produced (such as many regression-based models). By considering relationships between 

stressors and ecology/function using a probabilistic framework across multiple potential outcomes, 

environmental managers may be better equipped to understand and conceptualise the likelihood of 

both ideal and less than ideal outcomes for a given management scenario of interest and to better 

account for the inherent variability within estuarine ecosystems (Gladstone-Gallagher et al. 2019).  

Methodology 

Further details of the methodology are discussed in Bulmer et al. (2022a) and Bulmer et al. (2019). In 

brief, model structure and parameterization was informed by expert opinion following best practice 

(Marcot et al. 2006). The final model consisted of 21 nodes (ecosystem components) with 51 

relationships between nodes (Figure 4-3). By providing information on the four key stressor nodes 

(suspended sediment, mud content, nitrogen, metals) which are commonly measured in council 

monitoring programs, the cascading impacts on the ecology and ecosystem function can be 

explored. Each node (e.g., abundance of large suspension feeding bivalves) was defined and given 

five potential output states ranging from very low to very high, with numerical thresholds for each 

state. Continuous variables were discretized into states based on a literature review, expert opinion 

and by analysis of empirical datasets. Datasets used to inform state ranges included a dataset from a  
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Figure 4-2: Summary figure of the key steps taken to design and apply the expert driven estuarine ecosystem Bayesian Network model to inform management.  VL = 
Very, Low, L = Low, M = Moderate, H = High, VH = Very High. Figure from Bulmer et al. (2022a). 
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Figure 4-3: The Estuarine BN model showing conditional outcomes with Very Low stressor levels.  Stressor nodes are blue, Ecological nodes green and key Ecosystem 
function nodes yellow. Second stage macrofaunal and fish nodes are purple and are used to examine feedback effects on these important ecosystem components. All nodes 
collectively can be used to infer estuarine condition. Figure from Bulmer et al. (2022a). 
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large national estuarine experiment on multiple stressors (Tipping Points; (Thrush et al. 2021)), and 

publicly available data (Berthelsen et al. 2018, Hewitt et al. 2009, Pratt et al. 2014b, Thrush et al. 

2003b). If empirical data were not readily available to inform nodes, then the state ranges were 

based on literature review and expert opinion.  

Validation 

Overall trends in the model were well reflected by field observations (71 to 84% concordance), 

providing overall confidence in the model outputs (Bulmer et al. 2022a). Field observation data were 

collected as part of a national experiment (14 estuaries throughout New Zealand) (Thrush et al. 

2021), and the Auckland Council east coast monitoring program (8 estuaries (Hewitt & McCartain 

2017)). The 22 estuaries spanned a latitudinal gradient of 10◦ and could be broadly categorised as 

shallow, intertidally dominated estuaries. Experimental data were not available for every node, 

however this combined dataset included a total of 660 samples, with data for some or all of the 

following nodes (or proxies): sediment Mud, Nitrogen and Metal contents; densities of Large 

Bioturbating Deposit Feeders and Large Suspension Feeding Bivalves; sediment Chlorophyll a 

content as a representation of microphytobenthos standing stock; photosynthetically active 

radiation on the seafloor as a representation of Water clarity; Benthic gross primary production, 

Denitrification rates, Benthic nutrient cycling, Number of benthic taxa; and Carbon stocks.  

Example application 

The model has been used to inform management scenarios of interest for the Hawke’s Bay Regional 

Council, including modelling a potential reduction in stressor loadings to two estuaries due to 

catchment management initiatives (Bulmer et al. 2022a). Results indicated that reductions in 

suspended sediment loading were likely to result in ecological improvements, which would be 

further improved by reductions in sediment mud and metal content. Notably, reductions in 

suspended sediment were also associated with an increased probability of high nuisance macroalgae 

and phytoplankton if nutrient loading was not also reduced (associated with increased water column 

light penetration).  

4.4.2 Benthic Health Model (BHM) and Traits Based Index (TBI) 

Background 

A variety of benthic health models have been created which establish relationships between key 

environmental stressors and macrofaunal composition to aid management decisions (Berthelsen et 

al. 2020). Here we discuss two of these approaches, which have performed well in the New Zealand 

context (Clark et al. 2020, Hewitt et al. 2005, Rodil et al. 2013). 

The Benthic Health Model (BHM) is a multivariate analysis of benthic macrofaunal community 

composition used to assess relative estuarine health, based on sediment heavy metal concentrations 

(BHMetal) or mud content (BHMud).  

The models focus on benthic macrofaunal communities as an indicator of estuarine health. The 

rationale being that macrofaunal communities respond relatively rapidly to stressors, integrate the 

impact of multiple stressors over time, and are composed of a variety of species with different 

function roles, trophic levels and sensitivities (Hewitt et al. 2005). 

The approach was initially developed to assist estuarine management within the Auckland Region 

(Hewitt et al. 2005) but has more recently been expanded and validated using a national dataset 

(Clark et al. 2020). 
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The Traits Based Index (TBI) is a functional traits based index that relates the concentration of 

sediment metals and mud content to the richness of macrofaunal taxa in seven different functional 

trait groups. Declines in TBI scores with increases in mud and heavy metals are interpreted as losses 

of functional redundancy. Higher TBI scores therefore infer higher functional redundancy, or 

resilience to stress. Unlike the BHM, the TBI provides more information on whether functional 

redundancy is changing and whether specific functional traits are being affected. The TBI can 

therefore complement the BHM scores, and vice versa (Rodil et al. 2013). 

Methodology  

BHM 

Community data were used in separate canonical analyses of principal coordinates to create 

multivariate models of community responses to gradients in mud content and heavy metal 

contamination (Figure 4-4). Data used to inform the model relationships were obtained from 

regional estuarine monitoring programmes between 2002 and 2017. This dataset included 192 sites, 

from 34 estuaries, and spanned 12 degrees of latitude and encompassed two dominant estuary 

types and a range of bioregions.  

TBI 

The index is based on seven particular biological traits, representing broad categories relevant to 

ecosystem function. The index is calculated based on scores from seven functional group categories, 

with values near 0 indicating highly degraded sites and values near 1 indicating the opposite. 

Validation 

Both BHMud and BHMetal models performed well when compared to validation datasets (R2 = 0.81, 

0.71, respectively), and were unaffected by regional and estuarine typology differences (Clark et al. 

2020). The dataset used to inform (and validate against) the national BHM models included 

monitoring data from Ihutai, however it would also be possible to validate the model against data 

from the Ihutai alone. This has previously been done for an earlier iteration of the BHModel, which 

showed variable model fits between sampling locations. 

The TBI was validated against sampling data from over 100 sites in east and west coast estuaries 

around Auckland, with an R2 of approximately 0.2-0.35 between observed and predicted values 

(Rodil et al. 2013). 

Example application 

BHM and TBI scores have previously been calculated for Ihutai to assess changes in macrofaunal 

community composition and functional resilience through time (Bolton-Ritchie 2015a). Many of the 

sampling sites showed increases in mud content from 2008 to 2013, associated with a decline in 

BHM mud scores and associated ecological health through time. TBI scores were more variable, with 

increases observed at some sites despite increases in mud content, suggesting that differences in 

scores may have been driven by factors other than changes in mud and heavy metals at these 

locations. 
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Figure 4-4: Benthic Health Models (BHMs) developed using canonical analysis of principal coordinates 
(CAP) constrained by either A) mud (ln % mud) or B) metals (first axis of principal component analysis based 
on log transformed copper, lead and zinc).  Figure from Clark et al. (2020). Grey dashed lines and symbol 
colours demarcate the ecological health categories for each model. A linear regression has been fitted for each 
of the models; Mud BHM y = 1.0038x-1.0911, R2 = 0.81, Metals BHM y = 1.3002x-49258, R2 = 0.71. 

4.4.3 Estuarine Trophic Index (ETI) 

Background 

The Estuarine Trophic Index toolbox includes three tools. Tool 1 is used to assess eutrophication 

susceptibility, whereas tools 2 and 3 are used to assess estuarine trophic state. Tools 2 and 3 are 

briefly discussed below, as per https://shiny.niwa.co.nz/Estuaries-Screening-Tool-2/ , 

https://shiny.niwa.co.nz/Estuaries-Screening-Tool-3/ ,  (Zeldis et al. 2022), Zeldis and Plew (2022) 

and Robertson et al. (2016). 

ETI Tool 2 Characterises the ecological gradient of estuary trophic condition for ecological response 

indicators (e.g., macroalgal biomass, dissolved oxygen), and provides a means of translating these 

ratings into an overall estuary trophic index (ETI) score. The tool uses measurement data of primary 

indicators (e.g., macroalgae, phytoplankton) and secondary indicators (e.g., oxygen, redox potential 

depth, macrobenthos condition) to assess estuarine trophic state. 

 
ETI Tool 3 is a Bayesian Belief Network (BBN) that calculates an Estuary Trophic Index (ETI) score 
ranging between 0 (no symptoms of eutrophication) to 1 (grossly eutrophic) for estuaries in 
Aotearoa New Zealand (NZ).  
The ETI scoring is similar to that of Tool 2, but the Tool 3 BBN can operate when no or few values are 
known for the primary indicator nodes and secondary indicator nodes. It therefore is most useful 
when: 

• There is little or no knowledge of the state of indicators for an estuary; 

• To explore the response of estuary trophic condition to changes in loads resulting from 

altered land use or point sources; 

https://shiny.niwa.co.nz/Estuaries-Screening-Tool-2/
https://shiny.niwa.co.nz/Estuaries-Screening-Tool-3/
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• To explore the response of estuary trophic condition to nutrient/sediment load limit-setting 

scenarios in upstream catchments. 

Methodology 

The ETI 2 screens estuaries into estuary type, and then uses available monitoring data on key 

indicators to assess the condition of the estuary, with each indicator falling into approximately four 

bands ranging from no stress through to high stress. These indicators are then used to calculate an 

overall score for an estuary of interest (Robertson et al. 2016).  

The ETI 3 BBN includes estuary physiographic characteristics (estuary type, flushing time, intertidal 

area, estuary closure state, water column stratification) and nutrient and sediment loads available 

from existing geospatial tools and databases, that drive responses of ‘primary’ indicators 

(macroalgae and phytoplankton biomass) and ‘secondary’ indicators (or symptoms) of estuary 

ecological impairment (sediment carbon, sediment apparent redox potential discontinuity depth, 

water column oxygen, macrobenthos and seagrass condition) (Figure 4-5). Relationships between 

the BBN nodes are based primarily on observational and model-based information from NZ and 

international studies rather than expert opinion (Zeldis & Plew 2022). 

Validation 

Observational data are classified into bands used to assess the health of different ecosystem 

indicators and ultimately the ETI 2 score. The underpinning bands are largely based on expert 

opinion. 

The ETI 3 BBN predicted scores have been compared to the ETI 2 scores, with high agreement 

between scores for 11 well-studied NZ estuaries. 

Example application 

The ETI 3 model has been used to explore the impact of the diversion of wastewater from Ihutai via 

construction of an ocean outfall (Zeldis & Plew 2022). Monitoring data showed that the wastewater 

diversion resulted in a dissolved inorganic nitrogen load reduction of approximately 90% to the 

estuary, however ongoing inputs from rivers and drains was still sufficient to cause macroalgal 

blooms. The model was run on pre diversion and post diversion nutrient loadings and showed an 

improvement in ETI score, associated with improvements to predicted macroalgae blooms, sediment 

oxygen depth, and macrofaunal community composition. 
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Figure 4-5: The ETI Tool 3 BBN. Blue boxes are driver nodes with values input from ETI Tool 1.  Figure from ETI Tool 3, Zeldis et al. (2022). Yellow and pink nodes are primary 
and secondary indicator nodes and the red nodes are the final ETI score and bands. Grey nodes are intermediate calculation nodes. Indicator nodes have accompanying 
standardising nodes that normalise their respective scores prior to input to the primary and secondary scoring nodes. This BBN run shows results for Jacob River Estuary 
(Southland region, NZ) in its present state. 



 

68 Predicting effects of contaminant load reductions on biological communities: Feasibility study 

 

4.4.4 Summary 

Three models developed in New Zealand for assessing estuarine health were reviewed. The ETI 

model does not include metals content in benthic sediments. It does include sediment load however 

and therefore the model could be used to assess the effect of sediment load reductions on the 

Estuarine Trophic Index score. 

Although the BHM / TBI models do include metals and mud content, they do not include nutrients. 

While the CSNDC does not explicitly require a reduction in nutrient loads, existing evidence suggests 

that nutrients are important drivers of macrofaunal communities in Ihutai (Barr et al. 2020, 

Berthelsen et al. 2022, Zeldis et al. 2020).  

The estuarine BN does include mud, metals and nutrients as major stressors and uses these to 

predict benthic macroinvertebrate abundance (of certain species) and diversity – two measures that 

may meet CCC’s needs. On the other hand, the BN does not provide any measure of cultural health 

(nor does either of the other two models). 

All three approaches can be applied based on existing datasets, depending on the modelling 

scenario of interest. For example, if the management scenario of interest is focussed on a specific 

area of the estuary, then ideally sampling data exists from this location to inform the model. 

Alternatively, it may be possible to infer this from other existing sampling sites throughout the 

estuary (with the assumption that conditions are representative throughout). If no sampling data 

exists to inform model predictions, additional sample collection may be recommended. 

 



 

69 Predicting effects of contaminant load reductions on biological communities: Feasibility study 
 

Table 4-3: Summary of three modelling approaches that may be of use in the Ihutai context. 

Factors Estuarine BN 

 

Benthic Health Model (BHM) and Traits Based 
Index (TBI) 

Estuarine Trophic Index (ETI) 

 

Scope (e.g., whether such methods are suited to including all the factors of importance). 

Metals Yes Yes No 

Mud content Yes Yes No 

Nutrients Yes No Yes 

Comment By providing information on the four key stressor 
nodes (suspended sediment, mud content, 

nitrogen, metals) for an estuary of interest, the 
cascading impacts on the ecology (macrofauna, 

fish, biogenic habitat, fringing vegetation etc) and 
ecosystem function (primary production, nutrient 

cycling, denitrification etc) can be explored. 

Can run hypothetical scenarios of interest where 
key stressors are increased or decreased and 

ecosystem outcomes explored. 

Each BHM model relates to a single stressor in 
isolation. Applying all models in parallel would 

enable predictions to be made for the macrofaunal 
health of the site in relation to both sediment mud 
and metals. Other stressors such as nutrient loads 

and suspended sediment are not directly 
considered. 

 

The health score specifically relates to the 
eutrophication, however the model also predicts a 

range of other indicators (see above). Estuary 
physiographic factors are considered in the model. 

Data requirements 

 Four key stressors (suspended sediment, sediment 
mud content, water column nitrogen, sediment 

metals). 

Information on stressors can be derived from 
monitoring datasets and/or from expert opinion. 

Can be run with data from as little as one sampling 
site. 

Can be applied to Ihutai without further 
development using existing datasets. 

BHM Metals requires sediment metal 
concentrations (zinc, copper, lead). 

BHM Mud requires on sediment mud content. 

Can be derived from monitoring datasets and/or 
from modelled concentrations. 

TBI requires information on sediment mud and 
metal content. 

Can be run with data from as little as one sampling 
site. 

Can be applied to Ihutai without further 
development using existing datasets. 

ETI 2:  range of indicators (such as macroalgal 
biomass, macrobenthic taxonomic composition, 
sediment redox potential, TOC, N, P, Sulphides, 

particle size) which are used to generate ETI score. 
Can be calculated using data from as little as one 

sampling site. 

ETI 3: estuarine scale nutrient and sediment loads 
which are used to infer a range of other secondary 
indicator values. Information can be derived from 

existing geospatial tools and databases. 

Can be applied to Ihutai without further 
development using existing datasets. 
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Factors Estuarine BN 

 

Benthic Health Model (BHM) and Traits Based 
Index (TBI) 

Estuarine Trophic Index (ETI) 

 

Spatial and temporal resolution 

Temporal Predicts at a single point in time but can be used to 
model past, present and future (within the next 

~10 years) scenarios of interest. 

Predicts at a single point in time but can be used to 
model changes in benthic health scores through 
time. Typically used to look at historic changes in 

council monitoring datasets through time, 
however these models have also been used to 

predict future outcomes. 

Predicts at a single point in time but can be used to 
model changes in ETI scores through time, or with 
changes to future nutrient and sediment loadings. 

Spatial scale Can be applied at the estuarine or sub 
estuarine/site scale. 

Underpinning sediment metals and mud 
concentrations can be calculated from council 

estuarine monitoring data, but can also be 
calculated based on modelled/hypothetical 

concentrations. Calculated at the sub 
estuarine/site scale. 

Applied at the estuarine scale. 

Information required to run 

Inputs Requires information on habitat and water quality 
variables, flow metrics, riparian data. 

Information on stressors can be derived from 
monitoring datasets and/or from expert opinion. 

Sediment, nutrient and organic loads, inflows, 
temperature, biomass estimates 

Data on stream substrate, catchment area, slope, 
road and population density 

Ease of use and understanding 

Outputs Model outputs and structure is visually 
represented however values/aspects of interest 

can be extracted for further analysis or 
simplification. 

Provides an overall score to represent estuarine 
health with a focus on macrofaunal community 

composition. 

Provides an overall score to represent estuarine 
health with a focus on eutrophication, ranging 
from 0 (no symptoms of eutrophication) to 1 

(grossly eutrophic). As well as predictions for a 
range of other indicator nodes 

Availability  Available through research scientists Freely available using reported information Freely available via online tool 
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4.5 Statistical modelling methods for freshwater 

Statistical models can be used to test the strength of correlations between predictor (independent) 

and response (dependent) variables. Generally, causation can be inferred but not proven, unless 

predictor variables are experimentally manipulated and the effects of their values or presence or 

absence investigated. Statistical models can only be applied with confidence within the range of data 

used to develop the models.  

The predictive accuracy of developed statistical models can be tested by making predictions for a 

new dataset or for individual points within the data set used to create the model and comparing to 

the observed response values. 

Response metrics can be univariate (a single response) or multivariate (e.g., abundance values for 

multiple taxa). In this report we focus on univariate responses, as they were identified as the main 

variables of interest in the initial workshop. Univariate models are those in which a single response 

variable, e.g., the New Zealand macroinvertebrate community index (MCI), is predicted from one or 

more predictor variables, or covariates. The univariate modelling approaches considered include 

generalised linear models (GLMs), generalised additive models (GAMs), ensemble classification and 

regression trees (CART) methods such as random forest (RF) and boosted regression tree (BRT) 

models and structural equation models. 

The multiple stressor environment of urban waterways means that there are likely to be synergistic, 

additive or compensatory interaction effects between stressors on the biological communities, that 

effects of contaminants may occur at threshold levels (e.g., over toxicity levels) or be influenced 

indirectly through other variables. Using expert opinion to pre-determine a suite of potential shapes 

of relationships between contaminants and predictor variables that can be tested using the data 

available is likely to be beneficial. For example, identifying whether metals are beneficial at low levels 

but toxic at high levels, equally toxic as concentrations increase or only toxic over a particular 

threshold, will allow hypotheses about linear or exponential declines or a threshold responses to 

stressors to be developed. Alternative models that include the different a priori defined relationships 

between stressors and responses can be tested to identify the relationship that fits the data best. 

Overly complex (i.e., “wiggly”) relationships are unlikely to be biologically meaningful and may result 

from biases in the data set, particularly when the data set is comparatively small. The nature of the 

data collection also influences the choice of statistical models. When multiple sites within the same 

catchment have been sampled, or when sites are sampled repeatedly over time, random effects 

terms are likely required to address spatial or temporal autocorrelation (see Section 3.2.4). These 

considerations meant that the key criteria we focused on to compare the various statistical modelling 

methods were whether they could include: 

1. Non-linear relationships that can be pre-defined between predictors and response 

variables. 

2. Interactions between predictor variables. 

3. Indirect as well as direct effects of predictor variables on the response. 

4. Random effects, which can be included to help explain variation in additional factors. 

For example, the likelihood that sites within the same catchment are more similar to 

each other than to sites in a different catchment. 
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4.5.1 Random forests and boosted regression trees 

Random forests (RF) and boosted regression trees (BRTs) are ensemble classification and regression 

tree (CART) methods which use machine learning to fit the models. CART models are binary decision 

trees in which each fork is a split on a predictor variable and each node is a predicted response value. 

Predictor variables are provided, and the model detects any non-linearity and interactions between 

variables automatically. Random forests are ensembles (forests) of many individual classification and 

regression trees, where each tree is built using a randomly sampled with replacement subset of the 

data and model predictions are made by averaging all trees. The relative importance of the different 

variables put into the model can be determined by permutation, and the individual effect of a given 

predictor by holding the values of all other predictors a constant (usually at their mean or median 

values) (Whitehead et al. 2022a).  

Boosted regression trees are built sequentially, with each subsequent model fitted to the residuals of 

the previous model to explain the remaining variation in the response that is not yet explained (Elith 

et al. 2008). Variable selection (to determine the key predictors) can be done via stepwise model 

reduction procedures and comparing different models with information theoretical measures (i.e. 

AIC, Akaike’s information criterion) (Elith et al. 2008). 

RF and BRT have often been used together to investigate drivers of macroinvertebrate communities 

or to predict MCI at both regional and national scales, with data sets larger than that available for 

urban Ōtautahi waterways (Clapcott et al. 2013, Clapcott et al. 2017). Clapcott et al. (2017) also used 

both RF and BRT models with a combination of land cover, geology and topography, and 

environmental variables such as flow, temperature, and shading, to predict reference conditions at a 

national-scale (Clapcott et al. 2017). Both models performed similarly well, and identified similar sets 

of important predictor variables, namely percent native vegetation cover in the catchment, percent 

heavy pastoral cover in the catchment (Clapcott et al. 2017). A more recent study developed a RF 

model to predict MCI scores at a national scale based on a combination of climatic, geological, 

topographic, land cover, and hydrological variables from the River Environment Classification 

geodatabase (REC2.4, Whitehead et al. 2022). This model performed well, indicated by high 

explained variation, similarity between observed and predicted values, low bias, and low prediction 

uncertainty (Whitehead et al. 2022). However, the model was based solely on catchment- and 

segment-scale parameters and did not include finer-scale variables such as water quality. Within an 

urban context, boosted regression trees have been successfully used in Melbourne, Australia to 

investigate interactions of urban stormwater drainage, land cover and flow regime on a stream 

macroinvertebrate index (Walsh & Webb 2016). They found that imperviousness and forest cover, 

when attenuated for distance from stream (Walsh & Webb 2014), were the strongest predictors of 

macroinvertebrate decline. Again, this model used catchment-scale parameters and did not include 

finer-scale variables which may be of importance in understanding the effect of stormwater 

management on ecosystems.  

BRT and RF methods are advantageous in that they are highly flexible and automatically include 

complex nonlinear responses and interactions between predictor variables. However, the shape of 

the relationships between predictors and responses are defined by the data, with little ability to test 

between different a priori hypotheses. When used with small datasets there is a risk that they might 

converge on a relationship that makes little biological sense due to biases in the data. These model 

types also are not able to include random terms to account for variation caused by non-independent 

data points. 
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4.5.2 Generalised linear models and generalised additive models 

Generalised linear models (GLMs) and generalised additive models (GAMs) are models in which the 

response is the sum of a linear combination of predictor variables. GLMs can include pre-specified 

non-linear relationships (e.g., logarithmic or quadratic) by including terms to modify the predictor 

variable. GAMs can use the data to identify non-linear relationships using smooth functions, or 

splines, where the ‘wiggliness’ of the smooth can be limited to user-defined levels. Both GLMs and 

GAMs can be used to model data where the response fits a normal, Poisson (count data), or binomial 

(bounded by 0 and 1) distributions. GLMs and GAMs can be moderately complex, depending on data 

availability, but the initial equation is user-specified. GLMs and GAMs can also include random effects 

to account for the non-independence of time series data collected from the same site or to quantify 

the variation between units in a nested study design (hierarchically-structured data). Models 

including random effects are known as ‘mixed’ models – generalised linear mixed models (GLMM) 

and generalised additive mixed models (GAMM). 

GLMMs have been used in a wide range of freshwater studies on macroinvertebrates and fish. In 

New Zealand, Greenwood and Booker (2015) used GLMMs to investigate the influence of antecedent 

flow conditions on macroinvertebrate diversity and composition (although using alternative EPT 

metrics rather than MCI score) with a random site term (Greenwood and Booker 2015). They found 

between site differences were a significant source of variation; for nine of the fourteen potential 

covariates included in the models, more than half of the variation could be explained by the random 

site term (Greenwood and Booker 2015). Piggot et al. (2015) used GLMMs to compare 

macroinvertebrate responses between experimental mesocosm treatments varying in nutrients, 

sediment, and temperature. Crow et al. (2016) used GLMs to estimate probability of capture for 

freshwater fish for each year of data in the New Zealand Freshwater Fish database, while Boddy et al. 

(2019) applied GLMs to model relationships between water abstraction and fish communities.   

GAMs have been used for hydraulic habitat modelling assessments for two common New Zealand 

macroinvertebrate taxa, Deleatidium spp. and Aoteapsyche spp. (Shearer et al. 2015). That analysis 

indicated there were both significant non-linear relationships between macroinvertebrate density 

and velocity, depth, and substrate, and significant interactions between some pairs of explanatory 

variables. GAMS have also been used to investigate habitat preferences of koura (Jowett et al. 

2007a) as well as other macroinvertebrates and fish (Jowett et al. 2007b).  

GAMM and GLMM methods are advantageous as the shape of the relationship between predictors 

and response variables can either be user-defined (GLM) or the number of limited inflection points 

limited (GAM). Both can include random terms can work with reasonably small datasets, although 

model complexity will be limited.  

4.5.3 Structural Equation modelling 

Structural equation modelling (SEM), sometimes called path analysis, is a way to investigate 

hypothesised causal pathways between variables. The main strength and point of difference of SEM 

from other approaches is the ability to include both direct effects and those mediated through 

another variable (indirect effects). Combinations of measured parameters can also be combined into 

individual constructs called latent variables. For example, deposited sediment depth, water velocity 

and water temperature may be combined into a ‘habitat’ construct. Traditionally path analysis was 

difficult to apply to ecological situations as relationships between parameters generally needed to be 

linear, required large datasets (e.g., 5 replicates per linkage between variables) and could not include 

random terms (as in GLMMs). However, recent advances mean that path analyses can be conducted 
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using smaller data sets, including random terms, interactions and non-normal responses (e.g., 

piecewise SEM; Lefcheck 2016). Alternative approaches to the more traditional covariance-based 

path analysis, such as partial least squares path modelling (PLS-PM), have also been promoted as 

advantageous (Sarstedt et al. 2022).  

Relevant previous uses of SEMs in New Zealand for freshwater communities have included: 
- investigating the drivers of macroinvertebrate community composition in 64 agricultural 

streams in Canterbury (traditional SEM; Greenwood et al. 2011),  

- reach and landscape-scale casual pathways to predict Didymosphenia geminata biomass in 

over 50 sites (PLS-PM; Bray et al. 2016).  

- Investigating whether flood effects on fish biomass are direct or through reductions in 

macroinvertebrate biomass (fish food) or riverbed movement (potential mortality) in two 

datasets of 20 sites and 52 stream sites. (PLS-PM; Jellyman et al. 2013) 

- Investigating the impacts of land cover, floods and stream size on biomass of different 

freshwater trophic levels in 27 streams (piecewise SEM; Fraley et al. 2021) 

Path analysis is also used to test hypotheses about drivers of freshwater ecological or water quality 

conditions internationally. For example, to investigate the ecological status of streams using 

macroinvertebrate data, water quality parameters and anthropogenic pressures in Portugal (PLS-PM; 

Fernandes et al. 2019). Examples of use in urban waterways include a study to investigate how 

catchment characteristics of urban waterways are related to water quality (dissolved nutrients and 

conductivity) (Wu et al. 2015). 

The strengths of SEM analyses are in testing alternative hypotheses of pathways of effect from 

potential stressors to response variables, rather than developing predictive models. Relationships 

between predictors and responses are limited to those that are linear or can be transformed to be 

linear (e.g., log transforming a predictor). Model complexity is limited by data set size.  

4.5.4 Risk Analyses 

Risk analyses assess biota and stressors simultaneously; biological data are used to assess ecological 

condition, while environmental data (physical and chemical characteristics) is used to evaluate the 

relative importance of stressors (Van Sickle et al. 2006). Condition classes, rather than numerical 

variables, are used to describe stressors and responses. The relative risk, or the likelihood that poor 

stressor condition and poor biotic responses co-occur (Van Sickle et al. 2006), can be determined 

from survey data:  

𝑅𝑅 =  
Pr (𝑝𝑜𝑜𝑟 𝑏𝑖𝑜𝑡𝑖𝑐 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑜𝑟 𝑠𝑡𝑟𝑒𝑠𝑠𝑜𝑟 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)

Pr(𝑝𝑜𝑜𝑟 𝑏𝑖𝑜𝑡𝑖𝑐 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑔𝑖𝑣𝑒𝑛 𝑔𝑜𝑜𝑑 𝑠𝑡𝑟𝑒𝑠𝑠𝑜𝑟 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)
  

A relative risk of 1 indicates no association between stressor and biological condition, while values >1 

indicate greater relative risk. For example, a relative risk value of 2 indicates that a poor biotic 

condition is twice as likely when stressor condition is also poor. Confidence intervals for relative risk 

can be calculated by estimating the standard error using large sample approximations (Van Sickle et 

al. 2006) or local neighbourhood variance estimation (Pingram et al. 2019). 

Relative extent is estimated as the proportion of area in geographic space which falls into a given 

condition class for each stressor (i.e. poor, fair, good). Relative extent can be determined from field 

survey data or by using GIS, depending on scale and available information. Relative extent and 

relative risk are combined to determine attributable risk, the percentage reduction in the extent of 



 

Predicting effects of contaminant load reductions on biological communities: Feasibility study  75 

 

poor biological condition that would be expected to result from eliminating a particular stressor (Van 

Sickle et al. 2006, Herlihy et al. 2019, Pingram et al. 2019): 

𝐴𝑅 =  
Pr(ℎ𝑖𝑔ℎ 𝑠𝑡𝑟𝑒𝑠𝑠𝑜𝑟 𝑙𝑒𝑣𝑒𝑙𝑠) ∗  (𝑅𝑅 − 1)

1 + Pr(ℎ𝑖𝑔ℎ 𝑠𝑡𝑟𝑒𝑠𝑠𝑜𝑟 𝑙𝑒𝑣𝑒𝑙𝑠) ∗ (𝑅𝑅 − 1)
 

Attributable risk calculations rely on three key assumptions: 1) causality – the stressor causes an 

increased probability of poor condition, 2) reversibility – if the stressor is eliminated, causal effects 

will also be eliminated, and 3) independence – stressors are not correlated (Herlihy et al. 2019). 

If the third assumption is not met and stressors are strongly correlated, their effects will be 

confounded in the risk analysis. In this situation, a correlation matrix of categorical stressors 

converted to binary values (i.e. 1 for ‘poor’ and 0 for ‘good’) can be used to assess associations 

between variables (Van Sickle et al. 2006) and guide inference on the risk analysis results. For 

example, Van Sickle et al. (2006) noted that nitrogen and phosphorus classes were strongly 

correlated and therefore grouped them together into a single ‘nutrient’ class when interpreting risk. 

Alternatively, the attributable risk estimate can be adjusted for the effect of correlated stressors or 

non-stressor covariates, similar to a regression coefficient (Van Sickle and Paulsen 2008). However, 

clear guidelines for partitioning joint stressor effects are still lacking (Van Sickle and Paulsen 2008).  

Risk analysis has been used in the United States to identify the relative impact of sedimentation, 

nutrients, and acid mine drainage on stream macroinvertebrate communities (Van Sickle et al. 2006) 

and to assess the risk of different stressors on wetland vegetation condition (Herlihy et al. 2019). In 

New Zealand, it has been applied to identify and estimate the relative importance of key 

environmental stressors on stream macroinvertebrates and fish in the Waikato region (Pingram et al. 

2019). Pingram et al. (2019) also estimated attributable risk, or the reduction in poor biological 

condition (e.g. improved MCI scores) that could be achieved if stressor values were improved. 

Risk analysis is well suited to evaluating the relative importance of multiple stressors (Landis and 

Wiegers 2007, Van Sickle et al. 2006) and clearly communicating environmental survey results to 

non-technical audiences (Van Sickle et al. 2006), but generally not for developing predictive models. 

In addition, risk estimates can have high uncertainty (Van Sickle and Paulsen 2008), which can be due 

to uncertainty associated with collected data and estimations of stressor extent, as well as 

uncertainty in assumed causal pathways (Landis and Wiegers 2007). However, confidence intervals 

around risk estimates can also be extremely useful for communicating uncertainty in a management 

context (Pingram et al. 2019).  

4.5.5 Summary 

Many different statistical techniques exist for developing predictive models. Generally, the choice of 

the best model type to use depends on the goals of the analysis and the type of data available. As 

previously discussed, the selection of an appropriate model depends on:  

1. The amount of data available. The type or complexity of the model able to be run is 

limited by the amount of data available.  

2. Whether to include random terms. An example is the inclusion of a random term for 

‘river catchment’ if there are multiple sites between each catchment and sites in one 

catchment are likely to be more similar to each other than those on another 

catchment. Random terms can be included that change the intercept of the 

relationship between the predictors and the response between each level of the 
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random factor. For example, the same slope of relationships between QMCI and 

deposited sediment is predicted for each site, but some sites may have a higher 

starting QMCI than others. Statistical methods such as GLMMs, GAMs and some of the 

newer SEM method can include random effects 

3. The nature of relationships between variables in the model, i.e., whether they are 

assumed to be linear or more flexible non-linear relationships. For example, SEM and 

GLMMs can include pre-set non-linearity while GAMs and CART models fit non-linear 

relationships depending on the data. 

Ecological datasets are often comparatively small due to the expense and effort involved in collecting 

the data and this limits the complexity and type of model that can be developed. Model selection or 

simplification techniques are commonly used to identify which predictors to include when 

developing a model that fits the data best. Using expert opinion and good knowledge of the system 

being modelled is important during this process. One method to account for uncertainty associated 

with model outputs is to run several different types of statistical models and determine whether 

similar results are generated (White et al. 2023). In addition, statistical models based on survey data 

imply causation from correlations. The likelihood of relationships identified from statistical models 

should be assessed using expert opinion and ideally experimental manipulations, where possible.  

The factors limiting the predictive accuracy and usefulness of any predictive model developed are 

likely to be common problems in ecological datasets - the comparatively small dataset limiting the 

complexity of the model that can be run, the difficulty in disentangling the impacts of correlated 

stressors and limitations in interpreting how a change in a univariate biological response metric (e.g., 

MCI) relate ecologically to changes in individual stressor values. 

In general, the data available for urban Ōtautahi waterways are unlikely to be sufficient for CART 

models (boosted regression trees or random forests). These models also can’t include random terms 

and, given the small data set size, have the potential to fit relationships between predictors and 

responses that are caused by biases in the data rather than any a biologically relevant relationship 

that would generate accurate predictions.  

SEM models are likely to be useful for testing hypothesised relationships between potential stressors 

and response metrics, including indirect effects. SEM models could be useful to test the conceptual 

models developed during the expert workshop (Appendix A), although the small size of the dataset 

means that only relatively simple models will likely be able to be tested. However, SEM models are 

limited in their ability to predict to new data and cannot include random terms.  

GLMMs or GAMMs are strong candidates for statistical models that could be used to develop 

predictive models for the dataset identified in this report. Both model types allow use of random 

effects, which could be included to account for sampling of multiple sites within catchments and can 

include non-linear relationships between predictors and response variables. Expected relationship 

shapes are pre-selected in GLMMs (e.g., logarithmic or quadratic) while GAMMs use smoothers to 

develop relationship shapes that best fit the data, where the degree of ‘wigglyness’ can be limited. 

These models can identify parameters that have ‘high importance’, i.e., are commonly correlated 

with the response and generate plots of individual stressor relationships with the response, when all 

other stressors are held constant. 
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5 Feasibility of modelling responses in Ōtautahi streams 

5.1 Introduction 

In this section we assess the feasibility of developing or utilising existing models to predict how 

macroinvertebrate communities will respond to reductions in concentrations of contaminants in the 

urban waterways of Ōtautahi. Feasibility depends on:  

▪ The scope of the models compared to the needs of CCC, including the type of output 

(quantitative vs qualitative). 

▪ The scale of the model (spatial and temporal) compared to the needs of CCC, including 

how the model can consider lag times. 

▪ The data required versus the data available, including consideration of the limitations in 

that data. 

▪ The monitoring required to build and/or calibrate models and, briefly how and where this 

should be undertaken. 

▪ The availability (or lack of) reference sites if needed for modelling. 

▪ The likely uncertainty in the model. 

▪ The effort required to develop and/or run any model including some indication of the 

time required. 

 

The objective for predictive models was defined as being able to: 

1. Robustly predict how and when biological communities might respond to changes in 

network contaminant loads and resulting in-stream concentrations, as well as changes 

in other limiting factors (e.g., habitat availability) and 

2. Quantify which limiting factors (i.e., not just stormwater treatment) would have the 

greatest ecological benefit, the quickest ecological benefit, or limited ecological 

benefit, if they were to be addressed. 

The macroinvertebrate metrics QMCI and EPT were prioritised as key indicators of the biological 

communities (see section 3.2.2). Hard-bottomed tolerance scores were used to calculate QMCI 

values at all sites because naturally soft-bottomed sites were not identified, however, under the NPS-

FM the soft-bottomed tolerance scores are required to be used in sites that are naturally soft-

bottomed. Developing predictive models of changes in macroinvertebrate metric values in response 

to changes in individual stressors (e.g., contaminants) relies on: 

1. quantitative or qualitative relationships between key stressors and the macroinvertebrate 

community metrics, and 

2. an understanding of the mechanisms through which stormwater mitigations may reduce 

stressor impacts on macroinvertebrate communities.  
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5.2 Data preparation for testing models 

As discussed in section 3.2.3, not all the potential stressors are measured at the same location or 

over the same period as the macroinvertebrate data. This means the available data needed to be 

collated and summarised to test models for predicting macroinvertebrate response. 

Spatial matching 

There were macroinvertebrate data including the indices MCI_hb, percentage EPT excluding 

hydroptilids and QMCI_hb available for sixty-seven sites from six catchments (Ōtākaro/Avon; 21 

sites, Ōpāwaho/Heathcote; 16 sites, Puharakekenui/Styx; 12 sites, Otukaikino; 9 sites, 

Huritini/Halswell; 8 sites and Linwood canal; 1 site) across Ōtautahi. Other macroinvertebrate 

metrics (e.g., ASPM, MCI_sb, QMCI_sb) were not precalculated for all sites but could be calculated 

from raw macroinvertebrate data if required.  

Predictor variables with data for all 67 sites included: percentage bed cover of various macrophyte 

and periphyton categories (e.g., emergent macrophytes, long filamentous algae), canopy and riparian 

ground cover percentage cover, bank heights and slopes, sediment depth, substrate index, water 

depth, dissolved oxygen, pH, conductivity, water temperature and velocity. These measurements 

were all made on site at the same time as the macroinvertebrate sampling. 

Water quality monitoring sites were able to be linked to 63 of the macroinvertebrate sites with 19 

sites at the same locations as macroinvertebrate monitoring sites, 27 sites downstream, 16 upstream 

and 1 on a different river branch. On average, locations of macroinvertebrate and water quality 

sampling sites were within one kilometre of each other, up to a maximum of five kilometres distance. 

The water quality parameters available at all 63 sites included concentrations of dissolved nutrients, 

turbidity, suspended solids and dissolved metals (copper and zinc).  

Sediment monitoring sites were also able to be linked to 63 of the macroinvertebrate sites with 31 

sites in the same location, 16 downstream and 15 upstream. The greatest distance between 

macroinvertebrate and sediment sites was 7 km, with a median distance of 100 m between sites.  

Of the 63 sites with sediment, water quality and macroinvertebrate data, 53 sites could also be 

matched to nearby sites with hydrological data. Nearest flow sites were at the macroinvertebrate 

sampling location for 14 sites and, for the rest of sites, both upstream and downstream of matched 

ecological sites, and occasionally on different river branches, meaning that hydrological statistics are 

likely to be only broadly indicative of conditions at a matched ecological site (see Figure 5-1 below). 

In total eight of the 63 macroinvertebrates sites had hydrological, water quality and sediment data 

available for the same location. Thirty of the macroinvertebrate sites did not have any hydrological, 

water quality or sediment quality data collected at the same location. 
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Figure 5-1: Location of ecological monitoring sites within each stream catchment and the flow sites used 
for indicative hydrological indices.   
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Calculation of metrics for predictor variables 

The sampling protocol for macroinvertebrate communities within Ōtautahi where individual 

catchments are sampled at multiple sites once every five years provides a relatively limited temporal 

resolution. In cases where predictor variables have more frequent temporal sampling than the 

responses they needed to be summarised as long-term medians, means or other metrics. 

There are many metrics that indicate changes in hydrology due to changes in land use, abstractions 

and/or diversions. We selected two metrics that are indicative of urban land use change and the 

presence of impervious surfaces: the coefficient of variation (CV), which indicates the range in flow 

and the number of flow reversals (Richter et al. 1996). Unlike other metrics, these can be calculated 

for both flow and water level and so were suitable for the mixed data set with of 16 sites with water 

level data and 17 sites with flow data.  

The hydrological data were available for different windows of time for each hydrological site, as 

shown in Figure 3-3. Metrics were generated for a consistent time period for all sites where possible. 

Twenty-seven sites (82 %) had data for the period 1/1/2017 to 8/2/2018, across which hydrological 

metrics were generated. Other time periods used to generate hydrological metrics were, with one 

site each: 1/1/2018 to 8/2/2019, 1/1/2020 to 8/2/2021, 18/2/2021 to 31/12/2021 and for three sites 

between 1/12/2021 and 30/12/2022. Many of the sites had several dates missing data (all sites less 

than 10 days missing apart from one site each with 12, 38, 47 and 64 days missing hydrological data). 

The number of days with hydrological data for a site ranged from 310 to 404 days. Over the selected 

time window for each site we used mean daily data to calculate:  

1. the CV of either flow or water level (cv = standard deviation / mean *100) and  

2. the number of times the water level or flow reversed (i.e., stopped increasing and 

started decreasing or vice versa), as a proportion of the record length (number of 

days). 

For water quality, we calculated percentile statistics - median, 80th, 90th and 95th percentiles11 - based 

on 5 years (January 2017 to December 2021) of monthly monitoring data. For dissolved oxygen, 

where low concentrations (rather than high) are related to adverse effects, we also calculated the 5th 

percentile. For dissolved zinc the median and 95th percentile values were highly correlated (R2 =0.90), 

though for other variables including copper and suspended solids the relationships were weaker. 

For periphyton, Weighted Composite Cover (WCC) was calculated to summarise the percentage 

cover of different types of periphyton into one number for each site. WCC provides an estimate of 

nuisance algae using periphyton percentage cover data for filaments and mats. This index is useful at 

sites where both filamentous growths and mats occur and is calculated as: 

  WCC = (%cover by mats)/2 + % cover by filaments 

Final data set 

The final data set included 53 sites, with more than 100 different potential indicators for the possible 

stressors, including hydrological, water quality and habitat related stressors. In some cases there was 

more than one metric for a particular stressor – such as the median or 95th percentile zinc 

concentration. There was information on most of the stressors identified in the conceptual model, 

 
1111 Using the Hazen method, consistent with methods for assessing freshwater attributes, see New Zealand Government (2018) 
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although there were no indicators of stream baseflow or flood magnitude or the presence of 

movement barriers or woody detritus.  

The number of different metrics needs to be reduced to develop models. Expert knowledge, such as 

used to identify the likely key stressors for Ōtautahi waterways in Section 3.2.4, is crucial to refining 

the list of possible stressors. This requires knowledge of the likely mechanisms for stressors to impact 

biological communities. Comparing values for stressors against known thresholds (such as NOF 

attribute bands in the NPS-FM, or known toxicity thresholds) can also assist in identifying parameters 

that are likely acting as stressors on the biological community. Identifying and removing correlated 

stressors is necessary for many modelling approaches and will also help to reduce the number of 

possible stressors.  

The fit of expert-derived conceptual diagrams such as those developed in the workshop with CCC 

(Section 3.2.4) to the data available for waterways in Ōtautahi could be assessed using statistical 

analyses such as structural equation models (SEM, see section 4.5.3). SEM models are useful tools for 

hypothesis testing of flow diagrams such as those developed during the workshop as they allow the 

inclusion of indirect effects, where one variable may moderate the impact of another on the 

response. For example, warmer temperatures may directly affect macroinvertebrate community 

composition, but could also have an indirect effect via increased periphyton growth in warmer 

temperatures altering food availability for macroinvertebrates. Other model types (such as Bayesian 

belief networks) may also be useful in identifying key stressors. 

5.3 Testing the freshwater BN model 

The BN model was tested using data for a subset of sites in Ōtautahi, focusing on assessing potential 

differences in ecological metrics associated with differences in metal concentrations. In addition, 

sites were selected where the measured data indicated differences in impervious cover, bank 

lining/reinforcing and riparian vegetation. These variables were selected as indicators of catchment-

scale (impervious surface) and reach-scale stressors (bank lining/reinforcing, riparian vegetation). 

This testing was only undertaken with sites where water quality and ecological monitoring occur at 

the same site or very near. Ōtūkaikino Creek was an exception – water quality is not monitored at 

the upstream of Dickeys Road site but is measured at a site 2.7 km upstream.  

Input data for the BN model (Table 5-1) was acquired primarily from the CCC ecological and water 

quality monitoring programmes (collated as described in section 5.2). Metal, sediment and nutrient 

concentrations from monitoring data were used as inputs for the BN model. Note that when used 

within the UPSW decision support system (DSS), the BN estimates metal concentrations in the 

streams based on contaminant loads supplied by a contaminant load model. However, that 

contaminant load model was not being used in this project (the BN is run independently of the DSS) 

and loads were not readily available from other sources for each monitoring site. As the estimation 

of contaminant concentrations within the BN is indicative only (based on an annual contaminant load 

and an annual average river flow), we considered that using measured (rather than estimated) water 

quality data would reduce the uncertainty in model predictions. 
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Table 5-1: States of stressor inputs used to test the BN model.  

Stressor input 
Ōtūkaikino Creek 

upstream of Dickeys 
Road 

Puharakekenui/Styx 
River at Claridge 

Road 

Ōtākaro/Avon at 
Mona Vale 

 

Waimairi Stream Dudley Creek Addington Brook Riccarton Stream 

Periphyton max cover  < 30% < 30% < 30% < 30% < 30% < 30% < 30% 

Macrophyte cover  > 50% < 50% > 50% > 50% < 50% < 50% < 50% 

Bank lining/ reinforcing Not reinforced Not reinforced Not-partially 75:25 Partially reinforced Not reinforced Not reinforced Totally reinforced 

Stream straightening Not straightened 
Not reinforced Straightened 1- 25% Unclear, equal 

chance of all states 
used 

Straightened 25-50% Straightened 1- 25% More than 75% 
straightened 

Extent of tall riparian 
vegetation 

<25% 
25-50% 25-50% 25-50% 25-50% 25-50% 25-50% 

Riparian condition 
Exotic trees, 

sedge/flax/long grass 

Exotic trees, shrubs, 
sedge/flax 

Exotic trees, shrubs, 
sedge/flax, long 

grass, bare 

Exotic trees, shrubs, 
sedge/flax, long 

grass, bare 

Exotic trees, shrubs, 
sedge/flax, long 

grass, bare 

Exotic trees, long 
grass 

Grass, bare or 
artificial 

Stream erosion/incision Low Low Low Low Low Low Low 

Impervious surface cover <10% 17% 42% 36% 43% 57% 56% 

Hydrology score High Medium-high Medium Medium Medium Medium Medium 

Zinc concentrations 
(median-95th percentile) 

0.0011-0.0045 
0.0019-0.012 0.007-0.038 0.0036-0.019 0.011-0.058 0.027-0.13 0.010-0.083 

Copper concentrations 
(median-95th percentile) 

0.00027-0.002 
<0.002 <0.002 <0.002 <0.002-0.0031 <0.002-0.0041 0.0004-0.0036 

Nitrate+nitrite-N 
concentrations (median-
95th percentile) 

0.24-0.72 
0.54-1.24 2.3-3.5 1.8-2.7 0.33-0.76 1.0-1.6 2.3-3.2 

TSS concentrations 
(median-95th percentile) 

<3-4.2 
3-5 <3-5.7 <3-6.7 7.8-32 5-31 3-28 

Minimum DO 7.9 5.8 8.1 7.8 6.8 5.7 8.0 

Maximum Temperature 17.2 15.4 15.5 15.2 19.1 19.5 16.9 
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The BN model calculates a hydrology score based on catchment (e.g., impervious surface) and stream 

characteristics, and this score is used in the prediction of the macroinvertebrate score. However, that 

hydrology score was not suitable for spring-fed Ōtautahi streams, with flat topography. It was not 

within the scope of this project to develop or recalibrate a score for Ōtautahi. Therefore, for the 

testing this score was simply set as “High” for the Ōtūkaikino Creek, which has little upstream 

impervious surface, “medium-high” for the Styx River site, and “medium” for all other sites. Similarly, 

the stream erosion and incision score, a qualitative assessment of the potential for erosion and 

stream bank incision, was set to “low” for all streams. Example BN inputs and outputs are shown in 

Figures 5-2 to 5-3. 

 

Figure 5-2: Bayesian Network model inputs and predictions for the Otukaikino Creek site upstream of 
Dickeys Road – current state.   
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Figure 5-3: Bayesian Network model inputs and predictions for the Riccarton Stream site – current state.   

The BN predicted a high score for macroinvertebrate communities at the Ōtūkaikino Creek site; a 

medium-high score for the Styx River site and medium scores for the Dudley Creek and 

Ōtākaro/Avon River at Mona Vale sites (Table 5-2). Predicted scores were low-medium for the other 

three sites. The order of these predictions is consistent with the monitoring data for some sites - 

Ōtūkaikino Creek has the highest EPT taxa richness, the highest QMCI and highest MCI of the sites 

included (Boffa Miskell 2022). The QMCI score at that site is in the range considered indicative of 

mild pollution while the MCI is in the range considered indicative of moderate pollution. The 

monitoring data for the Puharakekenui/Styx River (Instream Consulting 2018b) also suggests higher 

macroinvertebrate scores for this site compared to other sites, at least based on the EPT and QMCI 

scores – though these are still in the range considered indicative of severe pollution or nutrient 

enrichment.  
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Table 5-2: Predictions from BN model compared to measured stream ecological state. Green shading 
indicates higher scores, colour scale applied evenly across the data range. 

 BN predictions Measured state † 

Site State Mean score (0-1) ± 
standard deviation 

EPT QMCI MCI 
Qualitative 

description based on 
metrics* 

Ōtūkaikino Creek 
u/s Dickeys Rd 

High 0.81 ± 0.12 11 5.5 99 
Mild-moderate 

pollution 

Puharakekenui/Styx 
River at Claridges 
Rd 

Medium-
high 

0.64 ± 0.11 7 4.4 84 
Severe pollution 

Dudley Creek Medium 0.53 ± 0.11 2 3.7 63 Severe pollution 

Ōtākaro/Avon at 
Mona Vale 

Medium 0.52 ± 0.18 7 3.2 86 
Severe pollution 

Waimairi Stream 
(d/s) 

Low-medium 0.33 ± 0.22 4 3.2 81 
Severe pollution 

Riccarton Stream Low-medium 0.25 ± 0.10 2 3.5 72 Severe pollution 

Addington Brook Low-medium 0.21 ± 0.20 1 3.1 70 Severe pollution 

Notes: † From monitoring undertaken in 2022 for Ōtūkaikino Creek; 2018 for Styx River and 2019 for Avon catchment sites. 

* Description from NPS-FM Table 14. 

For the remaining five sites, the order (in terms of highest to lowest based on the measured 

macroinvertebrate scores) varied depending on the score used. Although there were differences in 

the measured QMCI and MCI scores between sites, all were below 4.5 and 90 respectively (Instream 

Consulting 2018a) and indicative of severe pollution or nutrient enrichment (New Zealand 

Government 2023). The predictions from the BN for Dudley Creek and the Ōtākaro/Avon River at 

Mona Vale of medium macroinvertebrate scores appear too high, when compared to the measured 

EPT, QMCI and MCI, which suggest severe pollution. This suggests the model may need some 

refinement for Ōtautahi streams. The scores for the remaining three sites have relatively large 

standard deviations and there is essentially no difference between the predictions for these three 

sites. That seems consistent with the monitoring data – particularly for Riccarton Stream and 

Addington Brook with minimal difference in the EPT and MCI scores. 

Overall, the comparisons for the seven sites suggests the BN model may provide useful results, 

although the predictions may suggest distinction between some sites where the monitoring data 

suggests minimal difference.  

The BN model can be easily used to test future scenarios by selecting different states for any of the 

input nodes. The effect of reducing copper, zinc and sediment was tested for Ōtākaro/Avon River at 

Mona Vale, Addington Brook and Riccarton Stream. Median and 95th percentile copper, zinc and 

sediment concentrations were reduced by 30%.  

Even with this reduction, median zinc concentrations in Addington Brook would remain above water 

quality guidelines in at least 50% of samples. Based on that, there were no changes to the predicted 

macroinvertebrate score for Addington Brook (not shown).  

Similarly, at the Ōtākaro/Avon River Mona Vale site, changes in copper, zinc and sediment 

concentrations are not expected to affect the overall water quality for invertebrates as these 

concentrations are already relatively low. Nitrate-N concentrations at this site are expected to 
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remain above guideline concentrations, and thus the “water quality for invertebrates” score remains 

the same as does the predicted macroinvertebrate score (not shown). 

In Riccarton Stream, the median zinc concentrations would be within the ANZECC (2000) guideline 

with a reduction of 30%. This results in a slightly improved score for the “water quality for 

invertebrates” which results in a slight improvement for the overall macroinvertebrate score – from 

0.20 to 0.24 (Figure 5-4). A greater improvement in the macroinvertebrate score (to 0.40) is 

predicted by removing the bank reinforcing from the stream (Figure 5-5). The sensitivity of the 

predicted response to changes in zinc appears to be relatively low. If this model is used further, 

future steps should include a sensitivity analysis of the model. Ideally this would be include some 

ground-truthing of the sensitivity by comparing sites with higher and lower zinc concentration, but 

similar attributes in terms of riparian condition and instream habitat. 

It must be noted again that parts of this model were constructed from expert judgement, the system 

had only limited calibration within the UPSW project and that did not include Ōtautahi streams. The 

model has been tested here with no further calibration. The effects on macroinvertebrate 

communities of reach-scale drivers, like instream habitat, including the presence of bank lining, 

macrophyte and periphyton cover, may need to be further assessed, either through an updated 

review of literature or through an expert elicitation process. 

 

Figure 5-4: Bayesian Network model inputs and predictions for the Riccarton Stream site after 
improvements in water quality.   
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Figure 5-5: Bayesian Network model inputs and predictions for the Riccarton Stream site after 

improvements in water quality and removing the streambank lining. 

 

5.4 Statistical models – GAMM example 

As recommended in Section 4.5, we tested a GAMM model using the data available and report on 

key findings.  

GAMM models were selected as the trial methodology because of their flexibility with non-linear 

relationships between predictors and response variables (non-linear relationships are likely in 

macroinvertebrate community metrics in response to some stressors, see Larned and Schallenberg 

(2019)) and their ability to include random terms to account for non-independence of observations 

within waterways. Different model types (i.e., GAMM, GLMM, RF, etc.) can give slightly different 

results. Combining the predictions from several different model types via ensemble modelling or 

model averaging can help determine the level of uncertainty in the predictions generated – however, 

for this feasibility stage only one model type was trialled. 

We selected QMCI-hb as the response, as suggested in the workshop, and as summarised in section 

3.2.2. Significant pairwise correlations with QMCI_hb and percentage EPT individuals and MCI-hb 

indicated that results may be similar for several of the macroinvertebrate metrics. We also included a 
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model for %EPT (excluding hydroptilidae) for comparison with QMCI-hb models, as EPT metrics have 

been shown to respond to a wider range of environmental stressors, including temperature, flow 

alterations, and sedimentation, as well as nutrient enrichment (Wagenhoff et al. 2016). EPT taxa 

have also been shown to be a more reliable indicator of heavy metals in New Zealand streams 

(Hickey and Clements 1998). 

Because many macroinvertebrates move between river reaches by drifting and crawling, sites that 

are connected longitudinally by water flow are likely to have more similar macroinvertebrate 

communities compared with non-connected sites. Therefore, a random term for each waterway was 

required to account for this variance and to meet the assumption of independence between 

sampling sites.  

We identified over 100 potential predictors, including mean, median and maximum values of 

variables relating to dissolved metals, nutrients, clarity, deposited and suspended sediment, and 

hydrological metrics, among others. Many of these variables are at least moderately correlated (for 

example, r = 0.44 for DRP_median and TSS_median, r = 0.89 for dissolved zinc_median and dissolved 

copper_median), making identification of key stressors challenging. In addition, due to the relatively 

small dataset (n = 53 sites with hydrological, water quality, ecology and sediment data), only 4 

predictor variables were able to be included in each model due to computational constraints.  As the 

objective of this report was to assess the feasibility of modelling, not to develop the best possible 

predictive model, detailed investigations of the best subset of predictors to include were beyond the 

scope of this report. However, determining which predictors to include will be an important critical 

step when developing models for prediction, particularly in multiple stressor systems like the 

Ōtautahi streams where interactions between stressors are likely. In such cases, predictors can be 

selected using a combination of expert knowledge of stressors and likely mechanisms of impact on 

macroinvertebrates and statistical comparisons of different model subsets that include different 

predictors to identify models that have the best fit to the data.  

We tested models for QMCI-hb and percentage EPT individuals (%EPT – hydroptilidae) that included 

the predictors below. Note that these predictors were chosen based on our expert judgement, rather 

than the selection procedures described above. In choosing the predictors, we excluded one of any 

pair of predictors which were highly correlated (e.g. retained dissolved zinc but not dissolved copper) 

and predictors with poor data availability across sites. We also focused on predictors which have 

identifiable potential mechanisms of impact on macroinvertebrates (e.g. periphyton, a key food 

resource, and fine sediment, which impacts habitat availability) and predictors which were important 

in the wider context of the study (e.g., dissolved zinc, a target of stormwater management). The 

predictors we chose to include were: periphyton (as weighted composite cover of filaments and 

mats), percent silt/sand coverage of the streambed, water velocity and median concentrations of 

dissolved zinc. Again, these models have not been assessed against other models including different 

predictors and therefore should be considered example, rather than ideal, models.  

The example models explained between 43.5% and 83.5% of the variation in QMCI or %EPT, although 

for EPT models a high proportion of variance was explained by the random waterway term rather 

than potential stressors. The predictive power of the models was also limited. We briefly assessed 

predictive power of the models with hold-one-out cross-validations. This method involves removing 

the data for one site at a time from the model, generating the model using the remaining sites and 

then predicting the QMCI or %EPT value for the site that was left out. This is then repeated for all 

sites. Models that predicted accurate values for the excluded sites would show high correlation and a 

1:1 relationship between predicted values for each site and the actual observed value. The predictive 
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power of the QMCI and %EPT models were poor for omitted sites, with observed vs jack-knife 

predicted points being relatively uncorrelated and not following a 1:1 line (Figure 5-6). In addition, 

predictions for individual sites for %EPT were occasionally negative for some sites (Figure 5-6, right), 

although this could also be addressed by using a different model distribution more suited to 

percentage data (i.e., binomial rather than gaussian).  

 

Figure 5-6: Results from hold-one-out cross-validation on GAMM models for QMCI-hb and %EPT. Observed 
values are on the y-axis and predicted values for each site, generated with that site excluded from the model 
development on the x-axis. The solid line indicates 1:1 and the dashed line the line of best fit through the data 
points.   

 

Model diagnostics and partial dependence plots for each predictor, which visualise the relationship 

between the predictor and response when other predictors are held constant, indicated that degree 

of ‘wiggliness’ of some splines created by the models needed to be checked. For example, in Figure 

5-7, the automatic settings (k = 9) led to the line being overfit to the data (left plot). The ‘k’ term is 

the number of basis functions or maximum possible degrees of freedom allowed for a smooth term 

in the model. A higher k makes it possible for ‘wigglier’ lines to be fit to the data, while reducing k 

limits the number of complexity of the spline that can be fit. K can be tested by comparing model fit 

of models with varying values of K and by examining diagnostic plots of model residuals.  
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Figure 5-7: Example partial dependence plots for the relationship between water velocity and percentage 
ETP individuals (%EPT- hydroptilidae, yaxis) when the ‘wiggliness’ of the relationship is automatic (left, k =9) 
and limited (right, k = 4). Partial dependence plots show the relationship between the predictor and response 
when other predictors are held constant.    

 

5.5 Feasibility assessment 

The important factors for considering the feasibility of modelling ecological responses were outlined 

in section 5.1. These are summarised in Table 5-3, along with our assessment of that feasibility when 

using the BN or GAMM. In summary, we consider that the usefulness of GAMM models is currently 

constrained by the size of the dataset, which limits the number of potential predictors which can be 

tested at once. The BN, on the other hand, will be useful for scenario testing and making predictions 

for individual streams once it is parameterised for Ōtautahi. 
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Table 5-3: Summary of feasibility of modelling Otautahi Streams using a BN or GAMM. 

Factor BN GAMM 

Scope of model 
compared to 

CCC needs 

<> Semi-quantitative output – however the 
model does need further testing across 

Ōtautahi sites and conditional probability 
tables may need tweaking either for local 

suitability and/or to update with more recent 
knowledge on ecological stressors 

<> Quantitative output – however may 
be limited in ability to include all 

stressors 

Scale of model – 
spatially 

✓ Can be implemented at any site with input 
data. A spatial version could be developed 

(with considerable resource) 

<> Not site-specific, fit using data from 
all sites. Able to account for 

similarities in sites on the same 
waterway. 

Scale of model – 
temporally 

 Does not provide assessment of lag times for 
ecological recovery 

 Does not provide assessment of lag 
times for ecological recovery 

Data required <> The input data required is mainly available 
though may need additional analyses to 

generate the form required for model input 

 Data is available but spatial and 
temporal mismatches limit the size of 

the dataset which in turn limits the 
complexity (i.e. number of predictors 

able to be included) of the model 

Monitoring 
required to build 

or calibrate 

✓ No further monitoring required but could be 
useful to increase spatial scope 

<> Increased collection of paired data at 
existing sites would be beneficial 

Availability of 
reference sites 

N/A Not required N/A Not required 

Uncertainty in 
the model 

✓ BN model provides some indication of 
uncertainty through probabilities. Epistemic 
uncertainty (incomplete knowledge) cannot 

be assessed through model 

✓ Predictive ability can be assessed 
through cross-validation 

Effort to run 
model 

✓ Minimal effort to run the BN, however a 
moderate effort would be required to 

validate this model for Otautahi 

<> Minimal effort to run the models 
once R scripts developed – however, 

might be necessary to run large 
numbers of possible models for 

comparison 
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6 Feasibility of modelling responses in Ihutai 

6.1 Introduction 

In this section, we consider the feasibility of using a model or models to predict future ecological 

state in Ihutai. As outlined for the freshwater systems, feasibility depends on:  

▪ The scope of the models compared to the needs of CCC, including the type of output 

(quantitative vs qualitative). 

▪ The scale of the model (spatial and temporal) compared to the needs of CCC, including 

how the model can consider lag times. 

▪ The data required versus the data available, including consideration of the limitations in 

that data. 

▪ The monitoring required to build and/or calibrate models and, briefly how and where this 

should be undertaken. 

▪ The availability (or lack of) reference sites if needed for modelling. 

▪ The likely uncertainty in the model. 

▪ The effort required to develop and/or run any model including some indication of the 

time required. 

The monitoring data reviewed in section 3.3.1 suggests there are insufficient data for Ihutai to 

develop statistical/empirical models. There are few sites and a narrow range of metal 

concentrations. Data for Ihutai could be combined with that for other estuaries around New Zealand 

for model development. However there are already exist three national-scale models for New 

Zealand estuaries, based on empirical data and/or expert judgement. Of these three, the estuarine 

BN model is the only one to include the three key variables of copper, zinc and sediment (mud) along 

with nitrogen. We therefore consider it to be the most suitable model for CCC in assessing the effect 

of changes in copper, zinc and sediment loads, in an eutrophic estuary. The model predicts benthic 

macroinvertebrate abundance and diversity, two responses that would be useful for CCC; though it 

does not include a cultural health index. The key advantage of this model over the BHM and ETI is 

that it incorporates multiple stressors to predict future state, rather than predictions based on single 

stressors alone, which do not fully account for the complexities of ecological systems and their 

stressor responses (Bulmer et al. 2022b). One disadvantage of this model is that it is a steady-state 

model and does not predict the time required for ecosystem changes to occur. However, this is also 

true of the BHM and ETI models. 

The USC-4 model could be used first to predict the mud content and metal concentrations in the 

(benthic) sediment under scenarios of decreasing sediment and metal loading, and that output used 

for the BN inputs required. One advantage of the USC-4 model is that it can be run to provide a time-

series output – that is, to predict the sediment-metal concentrations and mud content over time, 

with decreases in stormwater loading. This could help in understanding the time required for 

changes in sediment and metal loads to result in responses in the receiving environment – at least in 

the time it takes for changes in bed sediment concentrations. 
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6.2 Testing the estuarine BN model 

The BN model was tested using data for two sites: Ōtākaro/Avon River mouth and Causeway. 

Differences in the macrofauna communities have been reported for these two sites (Berthelsen et al. 

2022), with greater diversity at the Causeway site, as well as greater abundance of large bivalves 

(specifically the wedge shell Macomona liliana and the cockle/tuaki Austrovenus stutchburyi). These 

species are representatives of “large bioturbating deposit feeders” (M. liliana) and “large suspension 

feeding bivalves” (A. stutchburyi), two ecological indicators predicted by the BN model. 

Input data were collated from the regular Ihutai monitoring data for sediment quality and water 

quality (Table 6-1, see Appendix C for details of states). Note that the BN requires sediment-metal 

concentrations in the <500 µm fraction of sediment, i.e., after coarse sand and shells have been 

removed. In the Ihutai monitoring, metals are analysed on the <2 mm fraction, which also excludes 

shells but includes coarse sand. However, these values were used for this initial BN model testing 

with no adjustment for the difference in grain size. 

Table 6-1: States of stressor inputs used to test the BN model. States selected were based on data from 
CCC and Environment Canterbury monitoring. The range of concentration/values of each state are provided in 
this table, see Appendix C for definitions of possible states for each stressor.  

Stressor input Ōtākaro/Avon River mouth, 2016 Causeway, 2016 

Mud in sediment High (51-90%) Low (5-20%) 

Metals in sediment High (0.23-1) Low (-1.64—0.67) 

Suspended sediment in water column Low (5-<20 mg/L) Low (5-<20 mg/L) 

Total nitrogen in water column High (0.33 -1.1 mg/L) Moderate (0.2- <0.33 mg/L) 

 

For the Causeway site, abundance of large bioturbating deposit feeders and abundance of 

suspension feeding bivalves had the greatest likelihood (highest percentage) of being “moderate” 

(Figure 6-1). The “moderate” category relates to an abundance of around 1-2 per 13 cm core for 

large bioturbating deposit feeders and around 10-20 per 13 cm core for suspension feeding bivalves 

(see Appendix C and Bulmer et al. 2022a). 
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Figure 6-1: Demonstration of estuarine BN model results using input for the a) Causeway site and b) Avon 
River mouth under recent conditions.  See Table 6-1 for input values and section 4.4 for explanation of the 
model. 

This prediction is generally consistent with that reported by Berthelsen et al. (2022), though M. 

liliana (a large bioturbating deposit feeder) was frequently more abundant than the “moderate” 

state, at 2-10 per core from 2018 to 2021, which is more consistent with the high (2-3) to very high 

(>3) states, which were predicted with a 25% and 9% probability (Figure 6-1). Benthic biodiversity 

was predicted to be low to moderate (10-20 different species per core) which is consistent with the 

monitoring data where diversity ranges from an average of 10 to 15 infauna taxa per core 

(Berthelsen et al. 2022).  

By contrast, the Ōtākaro/Avon River mouth site was predicted to most likely have very low 

abundance of large bioturbating deposit feeders (i.e., not present) and very low abundance of 

suspension feeding bivalves (i.e., <1 per core). This is consistent with the monitoring results 

demonstrating the scarcity of these two bivalves since 2012 (Berthelsen et al. 2022). Very low 

benthic biodiversity (<10 different species per core) was predicted for this site, consistent with 

monitoring data of 5-10 different species since 2008. In a future scenario, where the metal 

A 

B
B 
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concentrations at the Ōtākaro/Avon River mouth decreased by approximately 50% to a “moderate” 

state (which is similar to the concentrations measured in 2011), there is a slight change in the 

prediction for all three macrofaunal measures. In this scenario, there is an approximately 50:50 

chance of “very low” or “low” counts of bioturbating deposit feeders, and similarly the chances of 

other macrofauna indicators being “low” (rather than very low) increases.  

6.3 Feasibility assessment 

The important factors for considering the feasibility of modelling ecological responses were outlined 

in section 6.1. These are summarised in Table 6-2, along with our assessment of that feasibility when 

using the USC (or another model to predict sediment quality) combined with the estuarine BN. In 

summary, we consider that it is feasible to use these models to predict changes in macrofaunal 

communities (as an indicator of biological communities) as contaminant loads change over time. 

Table 6-2: Summary of feasibility of modelling Ihutai with USC and BN. 

Factor  Comment 

Scope of model compared to CCC needs ✓ Quantitative output 

Scale of model – spatially ✓ 
Can be implemented at any site with input data. A spatial version 

could be developed (with considerable resource) 

Scale of model – temporally  Does not provide assessment of lag times for ecological recovery 

Data required <> 

Minimal data required. Sediment quality data available is not in 
the form required by the BN model but it may be possible to 

relate the metal concentrations measured in Ihutai sediments 
(within the <2mm fraction) to that required by the BN (metals in 

<0.5mm fraction) using data where metals have been measured in 
both size fractions. 

Monitoring required to build or 
calibrate 

✓ 
No further monitoring required but could be useful to increase 

spatial scope 

Availability of reference sites N/A Not required 

Uncertainty in the model ✓ 
BN model provides some indication of uncertainty through 

probabilities. Epistemic uncertainty (incomplete knowledge) 
cannot be assessed through model 

Effort to run model ✓ 
Minimal effort for BN, some resource required for USC-4, 

moderate resource for a spatial version of BN, extensive resource 
required for other sediment deposition models 
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7 Discussion of limitations, conclusions and recommendations 

7.1 Limitations of the compiled datasets for developing predictive models 

The combined datasets of invertebrates, physical habitat, water quality, sediment and hydrological 

data for both Ihutai and the rivers were generated by compiling smaller datasets that were collected 

for other purposes, not with the intent of developing predictive models. This resulted in datasets, 

particularly for the rivers, with spatial and temporal mismatches between ecological, hydrological, 

sediment and water quality data. For example, 30 of the 69 freshwater macroinvertebrate sites did 

not have hydrological, water quality or sediment quality data for the same location, and even more 

sites had different types of data collected over different time periods. 

The low temporal resolution of macroinvertebrate data available for this project (5-yearly monitoring 

for most sites) means that predictive models would need to be generated using between-site 

differences to generate predictions of what may happen within a site over time as mitigations are 

enabled. The limitations of such ‘space-for-time’ models are discussed in Section 7.2.  

Other potential limitations of the compiled datasets include:  

- The relatively small size of the estuarine (n = 6) and freshwater (n = 69 sites but n = 53 sites 

with hydrological, ecological, water quality and sediment data) datasets limited the 

complexity of statistical models that could be developed. For example, the GAMMs could 

only include approximately four predictor variables.  

- Difficulties in separating correlation and causation between potential stressors and biological 

responses is a common problem in statistical models that are developed based on data 

collected in the field. Identifying key causative stressors is further complicated when multiple 

potential stressors are present. Careful selection of sites that occur along independent 

gradients of different stressors can make field surveys more informative regarding causative 

relationships. However, the multiple stressor nature of urban waterways makes it 

challenging, and sometimes impossible, to select appropriate sites. Experimental 

manipulations of different stressors can also identify causal relationships, though care must 

be taken to maintain relevance to real-world situations.  

- In general, using macroinvertebrate metrics (such as the MCI and QMCI) is convenient for 

reporting efficiency (i.e., a change in one number). However, identifying the key stressors 

that result in changes in macroinvertebrate metrics is very challenging and currently a high 

priority research area within New Zealand, with no current efficient solution.  

7.2 Uncertainty in predictions due to ecological constraints 

A predictive model uses the data or assumptions available to predict what may happen under 

different scenarios. Several potential limiting factors should be considered when assessing whether 

the predictions of a model are likely to actually transpire.  

Models developed based on data from sites with a range in stressor levels (e.g., copper, zinc and/or 

sediment concentrations), such as the national-scale models that are available or models that could 

be developed using CCC data can be considered space-for-time substitutions (Pickett 1989), for a 

model where contaminant concentrations decrease over time with improved stormwater 

management. Space-for-time substitutions indicate what the potential scope for recovery is, based 

on the macroinvertebrate communities that exist in sites with similar conditions to the reduction 
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targets. However, a key limitation is that these models do not incorporate any additional constraints 

on ecological recovery, such as legacy effects of contaminants or limits on dispersal and 

recolonisation which may result in time lags between contaminant reduction and ecological 

improvements or smaller ecological improvements than predicted. Whilst this limitation could be 

overcome using a time-based model – that is, observing changes over time at a single site to develop 

relationships – that approach would also have limitations, including time delays and transferability of 

observations at one site to another. 

Contaminants can continue to have short- and long-term impacts on stream process and biodiversity 

even after inputs have ceased or decreased (Harding et al. 1998, Zhang et al. 2009, Pereda et al. 

2019). The time to recovery may also vary with the magnitude (Pereda et al. 2019) and duration 

(Harding et al. 1998) of impact. Relatively rapid recovery has been observed following short-term 

disturbances, while long-term disturbances such as agricultural land use or forestry have been 

reported to affect stream biotic diversity up to 40 years later (Harding et al. 1998, Zhang et al. 2009). 

In addition, a reduction in contaminant load inputs may not affect biological communities if there are 

existing reservoirs in the receiving environments that are not removed from the system. For 

example, contaminated sediment may need to be removed from a waterway before improvements 

in biological communities are observed; or it may take a long time for those reservoirs to be removed 

through natural processes of sediment accumulation and burial.  

In addition, ecological restoration studies have shown that improving in-stream conditions such as 

water quality and habitat heterogeneity is often insufficient to improve biodiversity of stream fauna 

due to dispersal and biotic constraints. Dispersal constraints relate to the capacity for recolonisation 

– i.e., is there a suitable source population within the distance that species can move between 

habitats (Sudermann et al. 2011, Tonkin et al. 2014). For example, a study on river restoration 

success in Germany found that restoration of stream habitat was only associated with biodiversity 

improvements when there was a source population of additional desired taxa within 5 km of the 

restored site (Sundermann et al. 2011). Physical barriers can also constrain recovery, as 

demonstrated in Okeover Stream (Blakely et al. 2006).  

Furthermore, recolonisation takes time. Several studies have reported no significant increases in 

stream macroinvertebrate biodiversity for up to 20 years post-restoration (e.g., Palmer et al. 2010, 

Louhi et a. 2011, Leps et al. 2016). Parkyn and Smith (2011) predicted that recovery of 

macroinvertebrate communities in streams restored via riparian planting would likely begin 5-10 

years after restoration when dispersal constraints were low (i.e., a source population within 1-2 km), 

but up to 20 years with moderate dispersal constraints, such as source populations > 2 km distant 

and separated by habitat fragmentation due to land use change.  

Biotic constraints that can limit biological community recovery after contaminant reduction include 

trophic interactions such as competition and predation between species, as well as the sequence of 

colonisation and succession processes (Parkyn and Smith 2011, de Vries et al. 2020). ‘Resistance to 

restoration’ can also play a role, as in when degraded ecosystems become domination by hyper-

tolerant, highly competitive species which prevent recolonization by desirable species (Barrett et al. 

2021). 
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7.3 Conclusions of review of information and model testing 

7.3.1 Freshwater 

Data were available for a range of potential stressors of macroinvertebrate communities, although 

there were spatial and temporal mismatches in data availability for the different variables. Some 

potential stressors were correlated, indicating that separating effects of individual stressors may be 

challenging in some cases. 

Given the low frequency of monitoring data for the biological communities, a ‘space-for-time’ 

approach is the most appropriate, where differences between sites can be used to infer potential 

changes within a site when conditions alter with stormwater management.  

GAMM models were able to be run, incorporating a random term to account for biological 

similarities within waterways. However, the usefulness of these models was strongly limited by: 

- the multiple stressor environment, requiring multiple predictors, 

- the relatively small size of the dataset, which limits the number of predictors that can be 

included in each model, and 

- spatial and temporal mismatches between variables in the dataset.  

BN predictions broadly matched the order of the monitoring data for the seven tested sites. For two 

sites, the model predicted higher macroinvertebrate scores than have been measured (based on 

comparison to EPT, QMCI and MCI metrics). The testing suggested that BN could be suitable for 

predicting macroinvertebrate community responses to key stressors, including multi-stressor 

interactions, but that the model would need further refinement and parameterising for Ōtautahi 

streams. 

The BN model could also be run at multiple time-steps (such as every year), using different inputs 

(e.g., contaminant loads) at each time step, to indicate the potential changes in ecological response 

over time. However, as this model is a steady-state model, each prediction is independent and does 

not consider what happened in the past. There is no way to assess any lags in the recovery of benthic 

communities at the changed sediment and water quality. The model can therefore be thought of as 

indicating the potential ‘best case’ for the fauna under the new sediment conditions. 

7.3.2 Ihutai 

The temporal and spatial resolution of the regular monitoring for Ihutai is not high enough to 

develop statistical models. However, it is feasible to use an existing BN model, which includes metals 

and nutrients, to predict the effects of those stressors on benthic invertebrate communities.  

One advantage of the BN approach outlined above is the relatively low effort required to collate the 

data needed and to run the model. A second advantage is that the model can be used in the reverse 

mode – for example, a desired ecological state can be selected, and the model used to assess what 

sort of inputs (suspended sediment, nutrient and metal concentrations, mud content) are required to 

get to that state. The coarse outputs of this modelling approach may be considered a disadvantage, 

compared to a model that provides a definitive answer – however the probabilistic approach is more 

realistic, given our limited understanding of environmental systems and how they respond to 

multiple stressors. 
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The USC model (or any other sediment transport and deposition model) can be run as a time-series 

model to predict the metal-sediment concentrations over time with changes in sediment and metal 

loads delivered via stormwater. This will provide information on how long it may take for the changes 

in loads to result in changes in the sediment mud and metals content (i.e., lags in recovery). 

As with the freshwater model, the BN model could also be run at multiple time-steps (e.g., every 

year) to predicted changes over time with changing loads and sediment concentrations. However, as 

this model is a steady-state model, it does not consider what happened in the past, and there is no 

way to assess lags in the recovery of benthic communities following reductions in stressor levels. 

Similar to freshwater streams, there may be factors that limit recovery of the benthic faunal 

communities, such as the need for source populations that allow organisms to recolonise sites within 

Ihutai. Again, the model can therefore be thought of as indicating the potential ‘best case’ for the 

fauna under the new sediment conditions. 

7.3.3 Limitations of modelling 

The datasets were compiled from data collected for purposes other than generating a predictive 

model. The following factors limit the development of predictive models using the current datasets: 

1. Ecological, hydrological, sediment and water quality data are commonly not available at the 

same sites during the same time period, i.e., have spatial and temporal mis-matches. 

2. Limited temporal data means that a ‘space-for-time’ approach is used, where differences in 

conditions between sites are used to predict what may happen within a site as contaminant 

concentrations decrease over time with stormwater management. This does not take into 

account lags in recovery times, and therefore may result in overly optimistic predictions.  

3. The relatively small sizes of the datasets means that only comparatively simple statistical 

models can be generated using them, and it is not possible to include all identified potential 

stressors. 

4. Separating correlation from causation is challenging using data from field surveys of 

environments where multiple stressors often co-vary. 

5. Linking changes in values of community metrics, such as the MCI, to individual causative 

stressors is a challenging process for which there is no clear and simple solution currently 

available.  

In addition, several ecological constraints may act to restrict the ability for biological communities to 

respond as predicted by ecological models. Historical legacies of contaminants within the waterways 

may be difficult to remove, and prevent establishment of new taxa. Likewise, if there are no suitable 

sources of sensitive taxa nearby then this lack of recolonists may limit improvement of the biological 

community.   

7.4 Recommendations for next steps  

7.4.1 Predicting future state in Ōtautahi Streams 

At the workshop on 4th April, the findings of the model feasibility assessment were discussed, 

particularly for freshwater. Key messages discussed include: 



 

100 Predicting effects of contaminant load reductions on biological communities: Feasibility study 

 

- GAMM models are currently likely to be limited in their usefulness, given the limited number 

of predictors able to be included in the models. 

- Summarising groups of potential stressors into combined variable scores using ordinations or 

similar before inclusion in a GAMM could allow more information to be included in the 

model, while limiting the number or predictors in the model. However, this will make it more 

difficult to identify particular key stressors.  

- Data from other urban areas could be used to expand the datasets available for developing 

predictive statistical models, or for quantifying probability tables within BNs. The data would 

need to be assessed to make sure they are applicable to Ōtautahi.  

- Bayesian Networks may be useful as a tool to demonstrate how multiple issues may need to 

be addressed before an improvement in macroinvertebrate communities can occur.  

- Correlations between some of the stressors could be examined further to assess whether 

mitigations that reduce several correlated stressors could be more beneficial for biological 

communities than mitigations that target individual stressors.  

- If/when future monitoring sites are established, consideration could be given to aligning with 

existing water quality, sediment, hydrology and macroinvertebrate monitoring sites.  

- Locations of potential sources of sensitive taxa available to recolonise sites could be assessed 

to determine whether sensitive taxa are likely to disperse to restored sites.  

- Targeted experimental work could help identify key stressors and the causative mechanisms 

through which they impact biological communities. Experiments need to be realistic to real-

world field conditions to be particularly informative. Other options are to target field sites 

that vary independently across gradients of different stressors. Identifying such sites in the 

field is likely to be very challenging, if not impossible however, due to the multiple stressor 

environment of urban waterways.  

The recommendation from this report and from the workshop is to further investigate the use of the 

BN model for predicting the effects of contaminants on freshwater ecosystems. The next steps 

required for this include: 

1. Collating data in the form required for input to the BN (including impervious surface area). 

2. Testing the model for all available sites across Ōtautahi and assessing the accuracy of those 

predictions of current state. 

3. Updating the model conditional probability tables based on either data for Ōtautahi streams 

(learning from cases), literature information, and/or expert opinion where sufficient data are 

unavailable. 

4. Adding new nodes for factors not currently included such as distances to colonist sources. 

5. Re-testing the model predictions based on the updated model. 

6. Running sensitivity analyses of the model predictions including assessing the predicted effect 

of reducing metals and/or sediment compared to other management actions. 
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7.4.2 Predicting future state in Ihutai 

The combination of a sediment quality model and the estuarine Bayesian Network are recommended 

for predicting the future state in Ihutai under reduced copper, zinc and sediment loads. There are 

several steps that need to be assessed to confirm the suitability of the models recommended for 

Ihutai: 

1. Ihutai sediment quality is most frequently measured using the <2000 µm fraction, 

whereas the BN model uses the <500 µm fraction. A comparison of the two would be 

useful to assess whether any adjustments need to be made when using existing data to 

calculate the BN inputs. 

2. A simple sediment model is needed to calculate bed sediment metal concentrations in 

the estuary based on the changes in sediment and metal loads delivered to the 

estuary. The USC-4 (or the original USC) may be suitable for this however, this needs to 

be investigated further and tested. It is likely to need some expert judgement around 

inputs such as settling rates and mixing depth. 

3. Further testing of the BN model for all sites in Ihutai across all years of available 

monitoring data.  

7.4.3 Final conclusion 

The project goals are repeated below (in plain text) with an assessment of whether these have been 

met (italicised text). 

▪ Assess the feasibility of: 

− Robustly predicting how and when the receiving environment might respond to changes 

in network contaminant loads and resulting in-stream concentrations, as well as changes 

in other limiting factors (e.g., habitat availability) 

We consider that it is feasible with a BN to predict how the receiving environment might 

respond, including addressing possible changes due to other factors. Assessment and/or 

development of conditional probability tables for stressors specific to Ōtautahi waterways, 

and the sensitivity of model outputs to changes in these tables, would improve the 

robustness of predictions. A BN is not well suited to assessing when changes may occur, as 

discussed in sections 7.2 and 7.3.3, however we know of no other models that would be 

suited to this). 

− Quantifying which limiting factors (i.e., not just stormwater treatment) would have the 

greatest ecological benefit, the quickest ecological benefit, or limited ecological benefit, if 

they were to be addressed,  

It is feasible to use a BN to assess benefits of factors other than contaminant loads. We 

consider the BN to be very suitable for this purpose. However, it may not be feasible to 

robustly assess which factors have the “quickest” ecological benefit, given lag times etc.) 

− Assessing the response within the waterways with consideration of a range of variables: 

Cultural Health Index, Water Quality Index, Macroinvertebrate Community 

Index/Quantitative Macroinvertebrate Community Index, and fish diversity and 
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abundance, consistent with those used in the Healthy Waterbodies Action Plan (Margetts 

2023).  

BNs are well suited to assessing a range of different variables as identified by CCC.  There 

is insufficient data (and quantitative information for stressor-response relationships) to 

predicted response in fish diversity and abundance) 

− Assessing the response within Ihutai for the following variables: Cultural Health Index, 

Estuary Trophic Index, and benthic invertebrate abundance and presence.  

The Estuarine BN is well suited to predicting benthic invertebrate abundance and 

presence. There is potential to extend this model to the Cultural Health Index but the 

Estuary Trophic Index is not considered suitable as it does not consider effects of metals) 

▪ Determine the resources required (e.g., time and money) to carry out the full assessment.  

For reasons of commercial sensitivity, this information is provided separately to CCC.  

Overall, we consider that the project goals have been achieved.  The next steps were outlined in 

sections 7.4.1 and 7.4.2 should CCC wish to proceed. 
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Appendix A Conceptual models derived in expert workshop 
 
The following figures demonstrate the conceptual models as developed during the expert workshop. 
The thickness of arrows indicates the perceived importance of relationship. Arrow colours relate to 
stressor group. Thin black arrows demonstrate interactions between stormwater management and 
stressors or between stressors and other stressors. The relationships between stressors and 
biological indicators may be positive or negative and direct or indirect. 
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Appendix B Thresholds used for freshwater stressors 
Various thresholds were collated to assess the potential key stressors (habitat, water quality and 
sediment quality) currently affecting biological communities in Ōtautahi streams. These thresholds 
are largely from regulations and guidelines used in New Zealand or Canterbury. 

Table B-1: List of thresholds used to assess potential stressors in Ōtautahi streams.    

Stressor (and summary 
statistic used for comparison) 

Unit Thresholds Source of threshold 

Habitat    

Fine sediment % cover 9, 18, 27 NPS-FM NOF for class 3 

Shading % 10, 25, 50, 70, 90 Combination of (Davies-
Colley & Quinn 1998) and 

(Harding et al. 2009) 

Total macrophyte cover  % 50 Matheson et al. (2012) 

Long filamentous algal cover % 20, 40, 55 Matheson et al. (2012) 

Periphyton Weighted 
Composite Cover (WCC) index 

% 20, 40, 55 Matheson et al. (2012) 

Water quality    

Dissolved zinc (95th 
percentile) 

mg/L 0.0024, 0.008, 0.015, 0.031 ANZG (2018) 

Total suspended solids (95th 
percentile) 

mg/L 25 Stevenson et al. (2010) 

Dissolved oxygen 
concentration (5th percentile) 

mg/L 4, 5, 7.5 Richardson et al. (2001) 

DRP (median) mg/L 0.006, 0.01, 0.018 NPS-FM (2020) 

Nitrate + nitrite-N (median) mg/L 0.01, 0.33, 1.47 Canning et al. (2021) 

Total ammoniacal-N (median) mg/L 0.03, 0.24, 1.3 NPS-FM (2020) 

Total nitrogen (median) mg/L 0.001, 0.112, 1.833 TN (median) to achieve NOF 
bands A, B, C in unshaded 
streams, 10% risk, CD/L, 

(Snelder et al. 2022) 

Nitrate-N (95th percentile) mg/L 1.5, 3.5, 9.8 NPS-FM (2020) 

Nitrate-N (median) mg/L 1, 2.4, 6.9 NPS-FM (2020) 

Sediment    

Zinc  mg/kg 200, 410 ANZG (2018) 
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Appendix C States used in Estuarine BN 

Table C1: Full description of stressor nodes, ecosystem component nodes, state ranges, the data used to create the states and the relationships with other 
nodes. (Modified based on Bulmer et al. (2019)). 

Node Unit and definition State Expert opinion informed by: Relationships 

Sediment 
mud content 
(Mud 
content) 

% Mud (silt and clay) 
 
% by dry weight of surface 
(generally top 2 cm) 
sediment particles in a 
sample <63 µm in diameter. 

• Very Low: <5 

• Low: 5 to 20 

• Moderate: 21 to 50 

• High: 51 to 90 

• Very High: >90 

Field data, such as the Tipping Points dataset and 
publicly available regional council monitoring data 
(Hewitt et al. 2009, Rodil et al. 2013, Thrush et al. 
2012). 

Input variable 

Suspended 
sediment 

Mean mg L-1Total 
suspended solids (TSS)  
 
TSS is the dry-weight of all 
suspended particulate 
matter in a water sample 
(usually assessed by 
filtering the sample through 
a pre-weighed 0.8 or 1.2 
µm pore size filter). 

• Very Low: <5  

• Low: 5 to <20  

• Moderate: 20 to <40  

• High: 40 to 70  

• Very High: >70  

Total suspended solid data from a nationwide 
summary of water quality data across New Zealand 
(Dudley et al. 2017) and field studies , or inferred from 
modelled estuarine sediment loads (retrieved from the 
NIWA sediment load model) (Hicks et al. 2019). 
  

Input variable 

Nitrogen 
concentration 

Total Nitrogen mg L-1 
 
Total Nitrogen 
concentration in a water 
sample. 

• Very Low: <0.15 

• Low: 0.15 to <.20 

• Moderate: 0.20 to <0.33 

• High: 0.33 to <1.1 

• Very High: ≥1.1 

Total Nitrogen data from a nationwide summary of 
water quality data across New Zealand (Dudley et al. 
2017). 

  
 

Input variable 

Metal 
concentration
s (Metal) 

PC1.5 
 
Weighted concentrations of 
the metals Zinc, Copper, 
Lead within surface 
sediments (generally to 10 
cm depth). 

• Very Low: <-0.164 

• Low: -0.164 to -0.0667  

• Moderate: -0.0667 to <0.0234  

• High: 0.0234 to 0.1  

• Very High: >0.1 

Data used to inform expert opinion obtained from 
principal component analysis (PCA) of publicly 
available monitoring datasets (Hewitt et al. 2009, Rodil 
et al. 2013), which include metal concentrations in 
surface sediments and are related to Auckland Council 
guidelines which are increasingly used throughout the 
country. Values are calculated using the equation 
below, where X is metal concentration in mg/kg. The 
PCA 1st axis explained 94% of the variability in log 
Copper (Cu.500), Zinc (Zn.500), and Lead (Pb.500). 
PC1.5 = 
 

Input variable 

)(586.0)(528.0)(615.0 )500()500()500(

PbZnCu XXX ++
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Node Unit and definition State Expert opinion informed by: Relationships 

Large 
bioturbating 
deposit 
feeders 

Number of individuals per 
13 cm diameter core 

(generally 15 cm depth). 
 

Large deposit feeders 
bioturbate the sediment, 

transporting organic 
material and changing 

oxygen gradients 
throughout the sediment 

column, influencing carbon 
and nutrient cycling 

processes. 
 

Examples include 
Macomona liliana (wedge 
shell), Austrohelice crassa 

(mud crab), Hemiplax 
hirtipes (mud crab), Owenia 

petersenae (tube worm), 
Platynereis australis (nereid 

polychaete worm) 

• Very Low: Not present 

• Low: ≤1 

• Moderate:1 to <2 

• High:2 to 3 

• Very High: >3 
 

Field data, such as the Tipping Points dataset and 
publicly available regional council monitoring data 
(Hewitt et al. 2009, Pratt et al. 2014a, Thrush et al. 

2003a). 
 
 

Suspended sediment –Negative from 
Moderate to Very High (Thrush et al. 

2004) 
 

Mud content – Positive from Very low 
to Low, Negative from Moderate to 

Very High (Ellis et al. 2017, Thrush et al. 
2003b) 

 
Metals - Negative from Moderate to 

Very High (Ellis et al. 2017, Hewitt et al. 
2009) 

 
 

Large 
suspension 
feeding 
bivalves 
 
 

Number of individuals per 
13 cm diameter core. 

 
Act as key species in 

estuarine ecosystems by 
filtering the water column, 
influencing seafloor/water 

column carbon and 
nitrogen cycling, and 

providing an important 
food source for higher 

trophic levels, including 
humans. 

 
Large suspension feeding 

bivalves 
Examples Austrovenus 
stutchburyi (cockles), 

• Very Low: <1 

• Low: 1 to <10 

• Moderate: 10 to <20 

• High:20 to 40 

• Very High: >40 
 
 
 

Field data, such as the Tipping Points dataset and 
publicly available regional council monitoring data 
(Hewitt et al. 2009, Pratt et al. 2014a, Thrush et al. 

2003a). 
 
 

Suspended sediment –Negative from 
Moderate to Very High (Ellis et al. 

2002, Lohrer et al. 2006) 
 

Mud content – Negative from 
Moderate to Very High (Ellis et al. 

2017, Thrush et al. 2003b) 
 

Metals - Negative from Moderate to 
Very High (Ellis et al. 2017, Hewitt et al. 

2009) 
 

Large bioturbating deposit feeders - 
Negative from Moderate to Very High 

(Lohrer et al. 2013) 
 

Macroalgae and phytoplankton – 
Positive from Very Low to Moderate, 
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Paphies australis (pipi), 
Pectinidae (scallops), Atrina 
zealandica (horse mussel), 
Perna canaliculus (green 

shell mussel). 

Negative from Moderate to Very High 
(Green et al. 2014) 

Benthic 
biodiversity 

Number of species per 
13cm diameter core. 

• Very Low: <10 

• Low: 10 to <15 

• Moderate: 15 to <20 

• High: 20 to 25 

• Very High: >25 

Field data, such as the Tipping Points dataset and 
publicly available regional council monitoring data 
(Hewitt et al. 2009, Pratt et al. 2014a, Thrush et al. 

2003a). 
 

Suspended sediment – Increasingly 
negative from Moderate to Very High 

(Thrush et al. 2004) 
 

Mud content – Negative from 
Moderate to Very High (Ellis et al. 

2017, Lohrer et al. 2004a, Thrush et al. 
2003b) 

 
Metals - Increasingly negative from 
Moderate to Very High (Ellis et al. 

2017, Hewitt et al. 2009) 
 

Macroalgae and phytoplankton – 
Negative (Green et al. 2014) 

 

Macrofauna Intermediate node which 
combines large 

bioturbating deposit 
feeders, Large Suspension 

Feeding Bivalves, and 
Benthic Biodiversity nodes 
via a simple weighted sum. 

Intermediate node Intermediate node used to reduce the number of 
parent nodes (and their complexity of relationships) 

feeding into child nodes throughout the model. 

Large bioturbating deposit feeders – 
Positive 

 
Large suspension feeding bivalves – 

Positive 
 

Benthic biodiversity - Positive 

Microphytobe
nthos 

Chlorophyll a (µg g-1 
sediment) 

 
Microphytobenthos 

consists of unicellular 
eukaryotic algae and 

cyanobacteria that grow 
within the upper several 
millimetres of sediments. 
Chlorophyll a is a pigment 
that can be measured by 
standard methods as a 

• Very Low: <5 

• Low: 5 to <12 

• Moderate:12 to <20 

• High: 20 to 30 

• Very High: >30 
 

Field data, such as the Tipping Points dataset and 
publicly available regional council monitoring data 

(Thrush et al. 2012). 
 

Suspended sediment –Negative (Pratt 
et al. 2014b, Rodil et al. 2011) 

 
Mud content – Positive (Pratt et al. 

2015) 
 

Nitrogen – Positive (Sandwell et al. 
2009) 

 
Macroalgae and phytoplankton – 

Negative (Corzo et al. 2009, García-
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proxy for 
microphytobenthos 

abundance. 
 

Robledo & Corzo 2011, Pratt et al. 
2014b) 

Macrofauna – Positive (Lohrer et al. 
2004b, Pratt et al. 2015, Rodil et al. 

2011, Sandwell et al. 2009) 

Macroalgae 
(nuisance) 
and 
phytoplankto
n  

Macroalgae: 
Algal cover (%) and wet 
weight (g) per area (m2) 
 
Nuisance Macroalgae (e.g., 
Ulva spp./sea lettuce and 
Gracilaria spp./red algae in 
soft-sediment areas).  
 
Phytoplankton: 
Chlorophyll a (mg l-1 water) 
 
Phytoplankton are 
microscopic algae within 
the water column. 
Chlorophyll a is a pigment 
that can be measured by 
standard methods as a 
proxy for phytoplankton 
abundance. 
 

Due to similar model dynamics and 
to reduce model complexity, 
macroalgae and phytoplankton 
nodes combined. State based off 
the higher of the two values for 
nuisance macroalgae or 
phytoplankton. 
 
Macroalgae: 

• Very Low: Algal cover <2.5% 
and low biomass (<25 g/m2 
wet weight) of opportunistic 
macroalgal blooms. 

• Low: Algal cover 2.5-<5% and 
low biomass (25 to <50 g/m2 
wet weight) of opportunistic 
macroalgal blooms. 

• Moderate: Limited macroalgal 
cover (5– 20%) and low 
biomass (50 to <200 g/m2 wet 
weight) of opportunistic 
macroalgal blooms. 

• High: Persistent, high % 
macroalgal cover (25–50%) 
and/or biomass (200 to 1000 
g/m2 wet weight), often with 
entrainment in sediment. 

• Very High: Persistent very high 
% macroalgal cover (>75%) 
and/or biomass (>1000 g/m2 
wet weight), with entrainment 
in sediment. 

 
Phytoplankton: 

Nuisance macroalgae informed by outputs from a 
modified version of the estuary trophic index tool 
(Plew et al. 2019). 
 
Water column chlorophyll a concentrations informed 
from a nationwide summary of water quality data 
across New Zealand (Dudley et al. 2017). 

Suspended sediment –Negative  
(Christine et al. 2003, Coutinho & 
Zingmark 1993) 
 
Nitrogen – Positive (Coutinho and 
Zingmark 1993, Anderson et al. 2002 
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• Very Low:<0.001  

• Low 0.001 to <0.0015  

• Moderate: 0.0015 to <0.0028  

• High: 0.0028 to 0.0042 

• Very High: >0.0042 
 

 


