DETAILED ENGINEERING EVALUATION – QUALITATIVE AND QUANTITATIVE REPORT

SCARBOROUGH CLOCK TOWER

June 2012

Revision History

Revision	Prepared By	Description	Date
А	Alejandro Amaris	Final	27/9/12
В	Alejandro Amaris	CPEng review	4/12/13

DETAILED ENGINEERING EVALUATION – QUALITATIVE REPORT

SCARBOROUGH CLOCK TOWER (Scarborough Park, 147 Esplanade Rd, Sumner)

Prepared for:

Contract & Operations Team Transport and Green space Unit Christchurch City Council

by:

Capital Programme Group Christchurch City Council

June 2012

Report prepared by Alejandro Amaris

Report reviewed by Lloyd Greenfield CPEng (#78784)

Report co-reviewed by Mark Humphery CEng MIStructE No. 024371125

5/12/13 5/12/13.

5/12/13

-3-

TABLE OF CONTENTS

1.	EXEC	CUTIVE SUMMARY	5
2.	BAC	KGROUND	6
3.	Сом	PLIANCE	6
	3.1	Canterbury Earthquake Recovery Authority	6
	3.2	Building Act	7
	3.3	Christchurch City Council Policy	9
	3.4	Building Code	
4.	EAR	THQUAKE RESISTANCE STANDARDS	10
5.	BUIL	DING DESCRIPTION	11
	5.1	General	11
	5.2	Gravity and Seismic Load Resisting System	12
6.	Asse	ESSMENT	13
7.	Dам	AGE ASSESSMENT	13
8.	CRIT	ICAL STRUCRTURAL WEAKNESS	16
	8.1	Short Column	16
	8.2	Plan and vertical Irregularity	17
	8.3	Staircase	17
	8.4	Roof damage	17
9.	GEO	TECHNICAL CONSIDERATIONS	
	9.1	Site description and geotechnical investigation	
	9.2	Slope Failure and rockfall potential	
10	SUR	/EY	19
11		AL STRUCTURAL CAPACITY ASSESSMENT	
		%NBS Assessment	
		Discussion of results	
12		AIL CAPACITY ASSESSMENT	
		Material Properties and Member Strengths	
		Seismic Parameters	
		Loads	
	12.4	Structural Analysis Method	23
		Structural Assessment Method	
		%NBS Detail Assessment	
13		CLUSIONS	
14		OMMENDATIONS	
15		TATIONS	
		General	
		Geotechnical Limitations	
16		ENDIX A INITIAL EVALUATION PROCEDURE	
17		ENDIX B SPREADSHEETS CALCULATIONS	
18	Appe	ENDIX C DRAWINGS	37

EXECUTIVE SUMMARY

Structural inspections of the clock tower undertaken follow the 4th of September 2010, 22th of February earthquakes and subsequent aftershocks revealed minor new cracking and the opening of existing damage which has not compromised its load resisting capacity.

The building has been assessed initially using the NZSEE Initial Evaluation Procedure (IEP), and has been assessed to be 25% New Building Standard (NBS) and therefore a full detailed engineering evaluation (DEE) has been undertaken.

The Detail Engineering Evaluation indicates the structure to have a seismic capacity of 66% NBS. It is therefore not considered Earthquake Prone. The building is therefore considered low to moderate risk and can remain in use.

This report recommends that the structure requires maintenance to reduce the corrosion of the concrete reinforcement and spalling of the concrete surface in some parts of the structure.

If the client desires to upgrade the structure to 100% of the New Building Standard, further geotechnical investigations and complex analytical modelling will be required.

Strengthening of the building is likely to involve intrusive work to the foundations and superstructure which may need to be given careful considerations due to the structure's heritage status.

2. BACKGROUND

Capital Programme group has been engaged by the Transport and Green space Unit to undertake a detailed engineering evaluation of the Scarborough clock tower.

This report comprises two type of analysis: the first analysis is the initial Qualitative Assessment of the building structure based in general on the Detailed Engineering Evaluation Procedure document (draft) issued by the Structural Advisory Group on 19 July 2011. The second is a detail assessment based on the rocking mechanism of the structure.

A qualitative assessment involves inspections of the building and a desktop review of existing structural and geotechnical information, including existing drawings and calculations, if available. The detail assessment is a more realistic approach based actual material testing, load distribution analysis and computer modelling to represent the actual building condition.

The purpose of the assessment is to determine the likely building performance and damage patterns, to identify any potential critical structural weaknesses or collapse hazards, and to make an initial assessment of the likely building strength in terms of percentage of new building standard (%NBS).

3. COMPLIANCE

This section contains a brief summary of the requirements of the various statutes and authorities that control activities in relation to buildings in Christchurch at time of writing.

3.1. CANTERBURY EARTHQUAKE RECOVERY AUTHORITY

CERA was established on 28th March 2011 to take control of the recovery of Christchurch using powers established by the Canterbury Earthquake Recovery Act enacted on 18th April 2011. This act gives the Chief Executive Officer of CERA wide powers in relation to building safety, demolition and repair. Two relevant sections are:

Section 38 – Works

This section outlines a process in which the chief executive can give notice that a building is to be demolished and if the owner does not carry out the demolition, the chief executive can commission the demolition and recover the costs from the owner or by placing a charge on the owners' land.

Section 51 – Requiring Structural Survey

This section enables the chief executive to require a building owner, insurer or mortgagee carry out a full structural survey before the building is re-occupied.

We understand that CERA will require a detailed engineering evaluation to be carried out for all buildings (other than those exempt from the Earthquake Prone Building definition in the Building Act). It is anticipated that CERA will adopt the Detailed Engineering Evaluation Procedure document (draft) issued by the Structural Advisory Group on 19 July 2011. This document sets out a methodology for both qualitative and quantitative assessments.

The qualitative assessment is a desk-top and site inspection assessment. It is based on a thorough visual inspection of the building coupled with a review of available documentation such as drawings and specifications. The quantitative assessment involves analytical calculation of the buildings strength and may require non-destructive or destructive material testing, geotechnical testing and intrusive investigation.

It is anticipated that factors determining the extent of evaluation and strengthening level required will include:

- The importance level and occupancy of the building
- The placard status and amount of damage
- The age and structural type of the building
- Consideration of any critical structural weaknesses
- The extent of any earthquake damage

3.2 BUILDING ACT

Several sections of the Building Act are relevant when considering structural requirements:

Section 112 – Alterations

This section requires that an existing building complies with the relevant sections of the Building Code to at least the extent that it did prior to any alteration. This effectively means that a building cannot be weakened as a result of an alteration (including partial demolition).

Section 115 – Change of Use

This section requires that the territorial authority, i.e. the Christchurch City Council (CCC) be satisfied that the building with a new use complies with the relevant sections of the Building Code 'as near as is reasonably practicable'. Regarding seismic capacity 'as near as reasonably practicable' has previously been interpreted by CCC as achieving a minimum of 67% NBS however where practical achieving 100% NBS is desirable. The New Zealand Society for Earthquake Engineering (NZSEE) recommend a minimum of 67% NBS.

Section 121 – Dangerous Buildings

The definition of dangerous building in the Act was extended by the Canterbury Earthquake (Building Act) Order 2010, and it now defines a building as dangerous if:

- In the ordinary course of events (excluding the occurrence of an earthquake), the building is likely to cause injury or death or damage to other property; or
- In the event of fire, injury or death to any persons in the building or on other property is likely because of fire hazard or the occupancy of the building; or
- There is a risk that the building could collapse or otherwise cause injury or death as a result of earthquake shaking that is less than a 'moderate earthquake' (refer to Section 122 below); or
- There is a risk that that other property could collapse or otherwise cause injury or death; or
- A territorial authority has not been able to undertake an inspection to determine whether the building is dangerous.

Section 122 – Earthquake Prone Buildings

This section defines a building as earthquake prone if its ultimate capacity would be exceeded in a 'moderate earthquake' and it would be likely to collapse causing injury or death, or damage to other property. A moderate earthquake is defined by the building regulations as one that would generate ground shaking 33% of the shaking used to design an equivalent new building.

Section 124 – Powers of Territorial Authorities

This section gives the territorial authority the power to require strengthening work within specified timeframes or to close and prevent occupancy to any building defined as dangerous or earthquake prone.

Section 131 – Earthquake Prone Building Policy

This section requires the territorial authority to adopt a specific policy for earthquake prone, dangerous and insanitary buildings.

3.3 CHRISTCHURCH CITY COUNCIL POLICY

Christchurch City Council adopted their Earthquake Prone, Dangerous and Insanitary Building Policy in 2006. This policy was amended immediately following the Darfield Earthquake of the 4th September 2010.

The 2010 amendment includes the following:

- A process for identifying, categorising and prioritising Earthquake Prone Buildings, commencing on 1st July 2012;
- A strengthening target level of 67% of a new building for buildings that are Earthquake Prone;
- A timeframe of 15-30 years for Earthquake Prone Buildings to be strengthened; and,
- Repair works for buildings damaged by earthquakes will be required to comply with the above. The council has stated their willingness to consider retrofit proposals on a case by case basis, considering the economic impact of such a retrofit.

We anticipate that any building with a capacity of less than 33% NBS (including consideration of critical structural weaknesses) will need to be strengthened to a target of 67% NBS of new building standard as recommended by the Policy.

If strengthening works are undertaken, a building consent will be required. A requirement of the consent will require upgrade of the building to comply 'as near as is reasonably practicable' with:

- The accessibility requirements of the Building Code.
- The fire requirements of the Building Code. This is likely to require a fire report to be submitted with the building consent application.

3.4 BUILDING CODE

The building code outlines performance standards for buildings and the Building Act requires that all new buildings comply with this code. Compliance Documents published by The Department of Building and Housing can be used to demonstrate compliance with the Building Code.

After the February Earthquake, on 19 May 2011, Compliance Document B1: Structure was amended to include increased seismic design requirements for Canterbury as follows:

- Hazard Factor increased from 0.22 to 0.3 (36% increase in the basic seismic design load)
- Serviceability Return Period Factor increased from 0.25 to 0.33 (80% increase in the serviceability design loads when combined with the Hazard Factor increase)

The increase in the above factors has resulted in a reduction in the level of compliance of an existing building relative to a new building despite the capacity of the existing building not changing.

4. EARTHQUAKE RESISTANCE STANDARDS

For this assessment, the building's earthquake resistance is compared with the current New Zealand Building Code requirements for a new building constructed on the site. This is expressed as a percentage of new building standard (%NBS). The new building standard load requirements have been determined in accordance with the current earthquake loading standard (NZS 1170.5:2004 Structural design actions - Earthquake actions - New Zealand).

The likely capacity of this building has been derived in accordance with the New Zealand Society for Earthquake Engineering (NZSEE) guidelines 'Assessment and Improvement of the Structural Performance of Buildings in Earthquakes' (AISPBE), 2006. These guidelines provide an Initial Evaluation Procedure that assesses a buildings capacity based on a comparison of loading codes from when the building was designed and currently. It is a quick high-level procedure that can be used when undertaking a Qualitative analysis of a building. The guidelines also provide guidance on calculating a modified Ultimate Limit State capacity of the building which is much more accurate and can be used when undertaking a Quantitative analysis. The New Zealand Society for Earthquake Engineering has proposed a way for classifying earthquake risk for existing buildings in terms of %NBS

and this is shown in Figure 4a below. Figure 4b (extracted from AISPBE) compares the percentage NBS to the relative risk of the building failing in a seismic event with a 10% risk of exceedance in 50 years.

Description	Grade	Risk	%NBS	Existing Building Structural Performance	Improvement of Structural Perform		ructural Performance
					_►	Legal Requirement	NZSEE Recommendation
Low Risk Building	A or B	Low	Above 67	Acceptable (improvement may be desirable)		The Building Act sets no required level of structural improvement (unless change in use)	100%NBS desirable. Improvement should achieve at least 67%NBS
Moderate Risk Building	B or C	Moderate	34 to 66	Acceptable legally. Improvement recommended		(unless change in use) This is for each TA to decide. Improvement is not limited to 34%NBS.	Not recommended. Acceptable only in exceptional circumstances
High Risk Building	D or E	High	33 or Iower	Unacceptable (Improvement		Unacceptable	Unacceptable

Figure 4a	NZSEE Risk Classifications Extracted from Table 2.2 of the NZSEE 2006 AISPBE
-----------	--

Building Grade	Percentage of New Building Strength (<i>%NBS</i>)	Approx. Risk Relative to a New Building	Risk Description
A+	>100	<1	low risk
А	80 to 100	1 to 2 times	low risk
В	67 to 80	2 to 5 times	low or medium risk
С	33 to 67	5 to 10 times	medium risk
D	20 to 33	10 to 25 times	high risk
E	<20	more than 25 times	very high risk

Figure 4b	%NBS compared to the relative risk of failure.(Re	efer Table 2.1 of the NZSEE 2006 AISPBE)
i iguio ilo		

5. BUILDING DESCRIPTION

5.1 GENERAL

The clock tower consists on 2 storey reinforced concrete building with stone veer cladding with a total height of 13.8m height and square shape of 6.2m long with a floor foot print area of 38.5m2 and was built circa 1934.

The gravity and lateral resistance is provided by two long resisting walls in the North-South direction while four short walls connected by a archway are provided in the East-West direction to achieve the desired global displacement demand. Copies of the architectural plan are shown in Appendix C of this report. These drawings were provided following a building survey as part of the detail engineering evaluation process.

Figure 5a - Plan view showing location of clock tower

5.2 GRAVITY AND SEISMIC LOAD RESISTING SYSTEM

The gravity loads acting on the structure correspond to the self weight of the concrete wall and floor elements in addition to the stone veneer on the external faces of the walls.

Gravity loads from the reinforced concrete roof and 1st floor slab are transferred through a monolithic connection between the slab and the walls. The loads are then transferred into a reinforced concrete foundation. It should be noted that the foundations for the building were not inspected, however a desktop investigation based on copy of the original architectural drawings gives an estimate of their shape and size.

Lateral loads acting on the structure are resisted by the reinforced concrete walls all directions of the building on the lower floor and then transferred into the foundations. During an earthquake the building is expected to behave in a relatively stiff manner due to the size and arrangement of walls in both directions. The geometric nature of the structure is likely to initiate a rocking mechanism under dynamic loading conditions above a certain threshold which helps to dissipate the seismic energy.

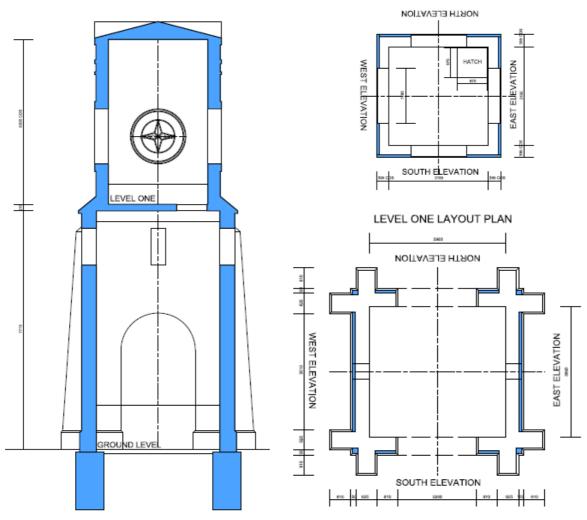


Figure 5b - Elevation and plan view of the structure

6. ASSESSMENT

An inspection of the building was undertaken on the 24th of February 2011 and subsequent inspections following a major aftershocks. The latest inspection compressed a full external and internal inspection and was carried out on the 10th of March 2012.

Inspections did not reveal a civil defence placard on the building, and investigations with the Christchurch City Council revealed no record of the placard of this structure either. The building was assumed to have a green placard in place as no restriction on access were enforced. The clock tower operator had mentioned that the clock stopped operating after the quakes and access to fix the clock was not prohibited.

A large portion of the main structural components of the building were able to be viewed since they are uncovered. The concrete walls are unlined internally but have a stone work veneer on much of the external face limiting direct observation of that side. No inspection of

the foundations of the structure was undertaken. Reinforcing bars within the concrete walls were scanned to find their spacing and concrete strength testing was undertaken using a Schmidt Hammer.

The site was assessed for damage, including observing the ground conditions, checking for damage in areas where damage would be expected for the structure type observed and noting general damage observed throughout the building in structural and non-structural elements.

The %NBS score determined for the building is based on the IEP procedure described by the New Zealand Society of Earthquake Engineering (NZSEE) from information obtained by visual observation of the building only as no record drawings are available.

7. DAMAGE ASSESSMENT

General observations are as follows:

- The clock tower is not in close proximity to any buildings.
- Its general condition is not considered to pose an immediate risk to the public.
- Some cracking of the superstructure appears to be related to corrosion of the underlying reinforcement due to water ingress. This is also evident at some of the more "recent" patch repairs where the recent seismic activity has caused damage.
 Overall the cracking has likely worsened and there is some new cracking which can be attributed to the earthquakes (Figure 7a).

Figure 7a – Vertical crack on the inside of the north face arch

 All four interior clock face rebates and surrounding walls have vertical and horizontal cracks (max size approximately 0.4mm). Some ingress of water was observed indicating that water might be corroding the underlying reinforcing bars and potentially damaging the internal clock equipment (Figure 7b).

Figure 7b – Interior of the north and East faces showing the vertical cracks and moisture inside the clock tower

• The tower appears to be vertical, but there is evidence of some lateral movement due to slab repairs adjacent to the sea wall. The cracks in the slab around the perimeter of the tower are most likely due to the tower foundations moving behaving differently from the shallower slab and step footing (Figure 7c).

Figure 7c – Cracks around the slab around the perimeter of the tower

 An inspection of the top of the tower revealed damage to the concrete roof. A closer inspection of this area indicated that there was no immediate danger from loose concrete. The concrete spalling is due to deterioration of the concrete and corrosion of the reinforcement. Further investigations to determine the extent of the issue and specify suitable repairs is required (Figure 7d).

Figure 7d – Concrete spalling at the roof

 A horizontal crack was observed in the side of the penetration through the 1st floor slab

Figure 7e – Crack in concrete slab at 1st floor

8. CRITICAL STRUCTURAL WEAKNESS

8.1 SHORT COLUMNS

No short columns were observed in the building.

8.2 PLAN AND VERTICAL IRREGULARITY

The building is square with no irregularities in plan or height and therefore for the purposes of the IEP assessment of the building, and determination of the %NBS score, no reduction has been assessed in accordance with the NZSEE guidelines.

8.3 STAIRCASE

There is no staircase in the structure. Access to the 1st floor is provided by ladder.

8.4 ROOF DAMAGE

No critical structural weaknesses were identified in the roof structure.

9. GEOTECHNICAL CONSIDERATION

9.1 SITE DESCRIPTION AND GEOTECHNICAL INVESTIGATION

The site is relatively flat and is situated adjacent to the Sumner beach elevated approximately two meters above mean sea level. No liquefaction was observed from the post 22nd February 2011 Aerial survey (Fig 9a).

Information from Environment Canterbury (ECan) indicates one borelog in close proximity to the clock tower. Classified as N36/0161, the borelog was taken in 1971 to a depth of 4.57m from ground level. The site geology described indicates sand down to 2.7m and blue sand from 2.7 to the end of borelog refusal 4.57m.

It should be noted that the purpose of the boreholes and well logs from Ecan were for groundwater extraction and not for geotechnical purposes. Therefore, the amount of material recovered and available for interpretation and recording is variable and may not be representative. Soil strength data was not recorded.

This assessment is based on a desktop review of the geology and existing ground investigation information, and observations from the Christchurch earthquakes since 4 September 2010.

Fig 9a. post 22nd February 2011 aerial survey and location of Ecan borelog (indicated by the star)

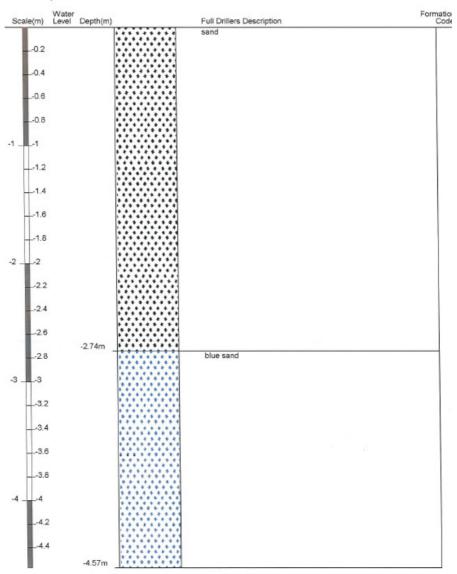


Fig 9a. Location of Ecan borelog investigated (indicated by the star)

The site appears to be situated on hard sand deposits, and potentially gravel at depth. The site has been identified as having moderate liquefaction potential, in particular where sands and/or silts are present. Isolated lithologies may be susceptible to liquefaction; however this is not anticipated to have significant detrimental effects on structures and amenities at the ground surface. It should be noted that little or no liquefaction occurred at or around the site following the major earthquakes.

Should a more comprehensive liquefaction and/or ground condition assessment be required, it is recommended that an intrusive investigation comprising of a minimum of two

piezocone CPT be conducted. A soil class of D (in accordance with NZS 1170.5:2004) has been adopted for the site for the purposes of the detail analysis.

9.2 SLOPE FAILURE AND ROCKFALL POTENTIAL

The site is located within Sumner near to the sea and away from potential rockfall locations. Global slope instability risk is considered negligible and the site is within a green zone as identified by CERA.

10. SURVEY

No level or verticality surveys were conducted for this building. However, the tower appears to be vertical. There is evidence of some lateral movement of the tower due to recent slab repairs adjacent to the sea wall.

11. INITIAL STRUCTURAL CAPACITY ASSESSMENT

11.1 %NBS ASSESSMENT

The building's capacity has been assessed using the Initial Evaluation Procedure based on the information available. The building's capacity excluding critical structural weaknesses, and the capacity of any identified weaknesses are expressed as a percentage of New Building Standard (%NBS) are shown in Table 11a.

 Table 11a
 Indicative Building and Critical Structural Weaknesses Capacities based on the NZSEE

 Initial Evaluation Procedure (IEP)

Item	%NBS		
Building excluding CSW's	25		

The building is therefore considered potentially Earthquake Prone as it achieves less than 33% NBS. This score has not been adjusted when considering damage to the structure as all damage observed was relatively minor and considered unlikely to adversely affect the load carrying capacity of the structural systems.

11.2 DISCUSSION OF RESULTS

The IEP score is generally considered as a guide for the buildings expected performance in a seismic event and is based upon general parameters.

The results obtained from the initial IEP assessment are consistent with those expected for a building of this age and construction type founded on Class D soils. The original building was constructed circa 1934 and there was no earthquake design loading standard current at the time (other than for buildings constructed in Wellington).

Since only minor damage was observed and the structure appears to have performed much better than the IEP score would suggest a detailed capacity assessment was undertaken to establish a more refined score.

12. DETAIL CAPACITY ASSESSMENT

12.1 MATERIAL PROPERTIES AND MEMBER STRENGTHS

An assessment of the material concrete strength was evaluated on site using a Schimitt hammer rebounding test. This measures the hardness of the concrete surface and can be calibrated to provide an estimate of the concrete strength. A representative number of tests were performed and it was found that a f'c=30 MPa can be used conservatively, which seems reasonable.

Non intrusive location and depth testing was undertaken for the steel reinforcement using a HILTI –bar scanner. This determined that two layers of longitudinal reinforcing at 550mm spacing and 600mm for the vertical reinforcing bars was within the concrete walls. The scan indicated the depth of the bars but did not provide the bar diameters. It was assumed round R12 were used for the walls as bar of this diameter were exposed where the concrete surface had spalled. The NZTA manual section 5.1 suggests that for this age of structure a tensile strength of 210 MPa can be used for the steel reinforcing. Figure 12.1 shows a plan cross section and the steel bar layout assumed within the walls, based on the site measurements.

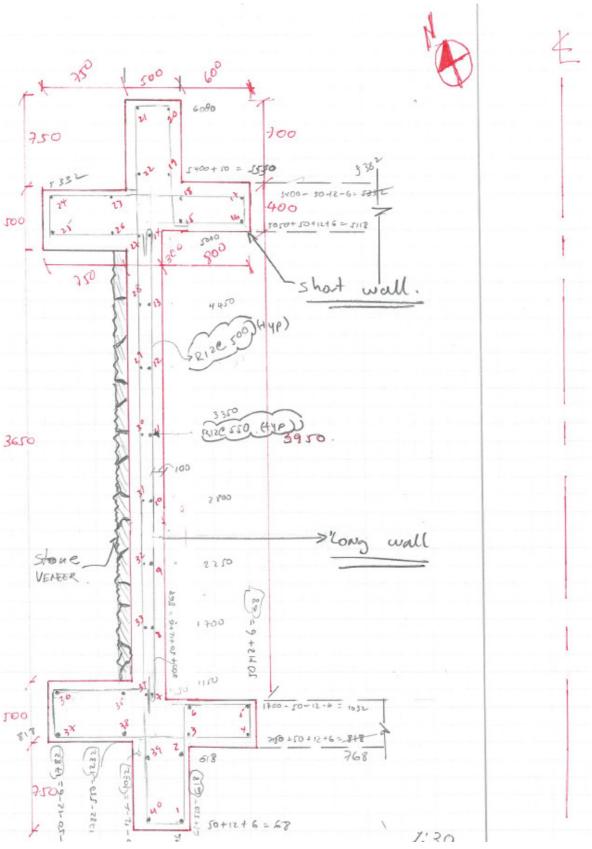


Fig 12. Cross section of walls and reinforcement

12.2 SEISMIC PARAMETERS

The seismic design parameters based on current design requirements from NZS1170:2002 and the NZBC clause B1 for this building are:

- Site soil class: D, NZS 1170.5:2004, Clause 3.1.3, Soft Soil (assumed)
- Site hazard factor, Z = 0.3, NZBC, Clause B1 Structure, Amendment 11 effective from 1 August 2011. The increased Z factor of 0.3 for Christchurch has been used in line with recommendations from the Department of Building and Housing recommendations (effectively resulting in a reduced % NBS score compared to IEP's undertaken prior to that date).
- Return period factor Ru = 1.0, NZS 1170.5:2004, Table 3.5, Importance Level 2 structure with a 50 year design life (note that the clock tower was constructed 78 years ago).
- A structural ductility factor of 1.0 has been assumed in both the long and short direction at both Serviceability limit state (SLS) and ultimate limit state (ULS) of the building based on engineering judgment (construction and detailing age of the structure). This ductility factor can be increased to 1.25 to make the study less conservative.
- The seismic coefficient was calculated as 0.21g and 0.63g for SLS and ULS respectively. This equates that total mass participating in the inertial forces during an earthquake.

12.3 LOADS

Total weight of the structure was calculated as 2528kN including stone veneer cladding and the assumed foundation size. No live load was accounted in the tower as no access to the tower is allowed, and there is a negligible load due to the clock mechanism.

The total seismic weight was calculated as 1592 kN. It is assumed that two long walls resist the seismic forces in the East-West direction (796 kN total shear for each long wall) and four short walls in the North-South direction (398 kN per short wall).

Mass redistribution for the first floor was calculated assuming that the mass of the first floor is the contribution (based on half of the first and second floor height), while the mass contribution of the second floor was based on half of the first floor height. Total floor weight was calculated as 1402 kN and 575 kN for the first and second floor respectively.

12.4 STRUCTURAL ANALYSIS METHOD

Equivalent static method analysis was used to obtain the lateral load distribution according to AS/NZ 1170.5 Earthquake Actions. Total base shear demand at ULS was estimated to be 796 kN and overturning moment of 8442 kNm at the base of the structure for the long walls direction. For the short walls, the total base shear was 398 kN and overturning moment of 4221 kNm. Table 12.a shows the lateral loads applied at each floor.

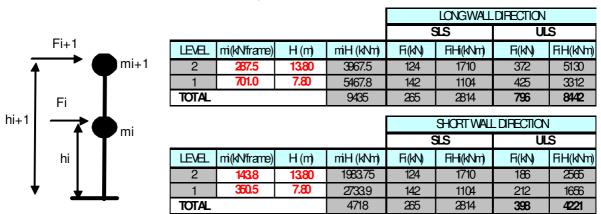


Table 12a Equivalent static method Procedure

12.5 STRUCTURAL ASSESSMENT METHOD

An initial section capacity of the structural components assuming fixed foundation determined that the walls in both direction do not have sufficient capacity to resist the seismic forces generated by lateral load at 100% NBS. In particular the tension forces in the walls due to the high overturning moments were in excess of the wall capacity.

However, since there was no evidence that the walls had been overstressed (by the presence of significant horizontal cracking) and there was pavement cracking around the structure, it suggests that the dynamic response of the clock tower was a rocking motion subjected to uplifting.

Rocking motion is a commonly observed phenomenon with complex and nonlinear behaviour. It can be shown that by allowing rocking to take place in structures, the resulting accelerations and hence forces can be significantly reduced. This approach when applied correctly acts as an effective isolation mechanism for structures against severe ground motion. A rocking structure normally enhances the seismic resistance and their post-earthquake serviceability such as in this case.

A prevalent sentiment amongst practitioners is that although the philosophy behind rocking as a seismic isolation solution is logical, it is prudent not to implement it for high seismic areas until the system performance has been tested by an actual major earthquake in addition to the lack of available guidelines for engineers.

The assessment of the clock tower's capacity has been undertaken in accordance with a paper recently published by the Structural Engineering Society new Zealand in April 2011 "Tentative Seismic Design guidelines for Rocking Structures" By Trevor Kelly.

This paper predicts the rocking uplifting structures by defining a foundation size and calculates spring soil stiffness given the shear modulus and Poisson's ratio from the soil characteristics and assesses the wall rocking strength, seismic displacements, drift and general performance of the walls.

The analysis presented in the paper is applicable for walls with relatively small ductility factors (DF) with a rocking strength (static restoring moment) of the one-quarter or more of the elastic demand (i.e. DF<4.0) which is applicable to this structure.

12.6 %NBS DETAIL ASSESSMENT

An assumed foundation width of 0.9m for the long wall and 1.9m (this is taking into consideration the continuity of the wall acting as a T section) for the short wall directions were used to assess the capacity of the rocking structure. Soil properties were evaluated by a parametric analysis using upper, medium and lower values of dense to medium sand. Shear modulus, Poisson's ratio soil failure stress and ultimate capacities where are given in Table 12.b.

10	Table 12b hange of soil properties analyzed								
Soil	Туре	Shear Modulus	ULS						
		(kPa)	Ratio	(kPa)					
Dense Sand	Upper	80000	0.4	650					
Medium Sand	medium	60000	0.35	550					
Soft Sand	Low	40000	0.3	450					

Table 12b Range of soil properties analyzed

The building had been evaluated by top drift and shear and are found to be within the drift limit and capacity of the concrete wall with the reinforcement. Table 12c shows the results and compared with the current standards.

It can be seen that as the structure is allowed to rock (i.e increase the drift), the total shear demand decreases and the structure is stiffer in the long walls direction than the short walls.

In terms of drift demand the structure has a total capacity between 66% to 104% of the New building standard (NBS). Similarly, the shear wall capacities are well in excess of the demand. However, the spacing of horizontal and vertical shear reinforcement, and the horizontal shear reinforcement in the walls and the ratio of vertical reinforcement area to gross concrete are of horizontal section do not comply with the NZ3101:2006 Concrete Structure Standards.

LONG WALL								
Soil	V* (kN)	φVn (kN)						
Dense Sand	2.0	104	236	646				
Medium Sand	2.6	96	193	646				
Soft Sand	3.5	71	61	646				
		SHORT WALL	•					
Dense Sand	3.1	81	88	228				
Medium Sand	3.5	71	77	228				
Soft Sand	3.8	66	65	228				

 Table 12c
 Indicative Building capacity based on the DEE

Medium dense sand with ultimate soil capacity of 550 Mpa, with shear modulus of 60000 kPa and passion's ratio of 0.35 is an average value for this assessment and represents the actual conditions for the structure. Therefore, with this assumption, the structure will possess a minimum of 71% NBS.

13 CONCLUSIONS

The damage to the structure during recent seismic activity in Christchurch has caused minor crack damage and open existing damage due to ageing. The building suffered insignificant damage that would not compromise the load resisting capacity of the existing structural systems.

The building is therefore not considered potentially Earthquake Prone as it achieves more than 66% NBS. This score is based on assumed foundation size based on construction/photograhs and geotechnical parameters based on a near by borehole log and seems to be appropriated when considering damage to the structure as all damage observed was relatively minor and considered unlikely to adversely affect the load carrying capacity of the structural systems. As a result it is recommended that the building remain in use.

Minor repairs are required to prevent corrosion on the reinforcing steel and concrete spalling.

14 **RECOMMENDATIONS**

This report recommend as follows:

- The structure requires maintenance to reduce the corrosion of the bars and spalling of the concrete in some parts of the structure.
- If the client want to upgrade the structure to a higher level of the new building standard in order to reduce drift levels it will requires to strengthening foundation by using screw piles in combination of strengthening walls by using FRP or similar products. This will require geotechnical investigations and model complex computer analysis of the structure.
- Repair slab and steps

15. LIMITATIONS

15.1 GENERAL

This report has been prepared subject to the following limitations and assumptions:

- Consented drawings of the building were not available.
- The information contained in this report has been obtained from visual inspections of the building, non destructive testing and available literature review of model analysis.
- The foundations of the building were not inspected.
- No intrusive structural investigations have been undertaken.
- No intrusive geotechnical investigations have been undertaken.
- No level or verticality surveys have been undertaken.

• No material testing has been undertaken.

It is noted that this report has been prepared at the request of the Client and is intended to be used for their purposes only. The author accepts no responsibility for any other party or person who relies on the information contained in this report.

15.2 GEOTECHNICAL LIMITATIONS

This report presents the results of a geotechnical appraisal prepared for the purpose of this commission, and for prepared solely for the use of the Client and their advisors. The data and advice provided herein relate only to the project and structures described herein and must be reviewed by a competent geotechnical engineer before being used for any other purpose. The author accepts no responsibility for other use of the data.

The advice tendered in this report is based on a visual geotechnical appraisal and limited desktop study. No subsurface investigations have been conducted. An assessment of the topographical land features have been made based on this information. It is emphasised that Geotechnical conditions may vary substantially across the site from where observations have been made. Subsurface conditions, including groundwater levels can change in a limited distance or time. In evaluation of this report cognisance should be taken of the limitations of this type of investigation.

An understanding of the geotechnical site conditions depends on the integration of many pieces of information, some regional, some site specific, some structure specific and some experienced based. Hence this report should not be altered, amended or abbreviated, issued in part and issued incomplete in any way without prior checking and approval by the author. The author accepts no responsibility for any circumstances, which arise from the issue of the report, which have been modified in any way as outlined above.

16 APPENDIX A INITIAL EVALUATION PROCEDURE

etailed Engineer	ing Evaluation Summary Data	•				V1.11
cation	Building Name:	New Brighton Clock Tower]		Reviewer:	Lloyd Greenfield
	Building Address:	Unit	No: 147A	Street Esplanade Road	CPEng No: Company:	78784 CCC
	Legal Description:	Liock Lower Degrees	Min	Sec	Company project number: Company phone number: (
	GPS south: GPS east:				Date of submission: Inspection Date:	03/12/2013 10/03/2012
	Building Unique Identifier (CCC):]		Revision: Is there a full report with this summary?	B
te	Site slope:	flat	1		Max retaining height (m):	
	Soil type: Site Class (to NZS1170.5):	sandy silt D			Soil Profile (if available):	
	oximity to waterway (m, if <100m): Proximity to clifftop (m, if < 100m): roximity to cliff base (m,if <100m):			li	f Ground improvement on site, describe: Approx site elevation (m):	
	Toximity to thir base (m,ir Cioom).				Approx site devation (m).	
nilding	No. of storeys above ground:	2	1	single storey = 1	Ground floor elevation (Absolute) (m):	
	Ground floor split? Storeys below ground	0		G	round floor elevation above ground (m):	
	Foundation type: : Building height (m): Floor footprint area (approx):	strip footings 13.80 25		height from ground to level of upp	if Foundation type is other, describe: permost seismic mass (for IEP only) (m):	13.8
	Age of Building (years):	80	j		Date of design:	Pre 1935
	Strengthening present?	no]		If so, when (year)?	
	Use (ground floor):	public ather (constitut)	1		And what load level (%g)? Brief strengthening description:	
	Use (upper floors): Use notes (if required): Importance level (to NZS1170.5):	clock maintenance only L2				
avity Structure						
	Gravity System: Roof: Floorer	load bearing walls concrete			slab thickness (mm) slab thickness (mm)	200
	Floors: Beams:	concrete flat slab			slab thickness (mm) overall depth x width (mm x mm) typical dimensions (mm x mm)	210
	Walls:	load bearing concrete	j		typical dimensions (mm x mm) #N/A	
teral load resisting :	Lateral system along:	concrete shear wall	1	Note: Define along and	note total length of wall at ground (m):	6.15 0.355
	Ductility assumed, µ: Period along: Total deflection (ULS) (mm):	1.00 0.67	0.68	across in detailed report! from parameters in sheet	wall thickness (m): estimate or calculation? estimate or calculation?	0.355 calculated
maximum	Total deflection (ULS) (mm): interstorey deflection (ULS) (mm):		J		estimate or calculation?	
	Lateral system across: Ductility assumed, µ:	non-ductile concrete moment frame 1.00			note typical bay length (m)	3
	Period across: Total deflection (ULS) (mm):	1.13	0.00		estimate or calculation?	calculated
maximum	interstorey deflection (ULS) (mm):				estimate or calculation?	
Separations:	north (mm		-	leave blank if not relevant		
	east (mm south (mm):	=			
	west (mm)	j:				
Non-structural elem	Stairs					
	Wall cladding Roof Cladding	3:				
	Glazing	s:				
	Services(list):[
Available docu						
	Architectura Structura	al none			original designer name/dat original designer name/dat	e
	Mechanica Electrica	al none			original designer name/dat original designer name/dat	e
	Geotech repor	none			original designer name/dat	e
Damage Site:	Site performance		_		Describe domes	
(refer DEE Table 4	2) Site performance Sattlement	t: none observed	-		Describe damag notes (if applicable	
	Differential settlement	t: none observed n: none apparent	=		notes (if applicable notes (if applicable notes (if applicable):
	Lateral Spread Differential lateral spread	d: none apparent	=		notes (if applicable notes (if applicable):
	Ground crack: Damage to are:	s: none apparent			notes (if applicable):): ageing cracks due to construction defe
Building:						, <u></u>
	Current Placard Statu:					
Along	Damage ratio Describe (summary)		0%		Describe how damage ratio arrived a	ti
Across	Damage ratio			Damage_Ratio = (%NBS	(before) - %NBS (after))	
	Describe (summary)):				
Diaphragms	Damage?				Describ	
CSWs:	Damage?				Describ	
Pounding:	Damage?				Describ	
Non-structural:	Damage?	ri Ves			Describ	
Recommendatio			_			
L	evel of repair/strengthening required Building Consent required:	no			Describ- Describ-	51
	Interim occupancy recommendation:		-			Access required for clock only
Along	Assessed %NBS before: Assessed %NBS after:		0% ## 0%	## %NBS from IEP below	If IEP not used, please deta assessment methodologi	il <u>Refer to DEE quantitative Assessment</u> r
Across	Assessed %NBS before:	6	62 ##	# %NBS from IEP below		
	Assessed %NBS after:	6	62			

EP Use of this method is not mandatory - more detailed analysis may gi	ve a different answer, which would	take precedence. D	Do not fill in fi	elds if not using IEP.
Period of design of building (from above): Pre 1935		h. from abov	e: 13.8m	
Seismic Zone, if designed between 1965 and 1992:		red for this age of buildin red for this age of buildin		
	Period (from above): (%NBS)nom from Fig 3.3:	along 0.67		across 1.13
Note:1 for specifically design public buildings, to the code of the day: pre-190 Note 3:	i5 = 1.25; 1965-1976, Zone A =1.33; 1965-191 Note 2: for RC buildings designed b or buildings designed prior to 1935 use 0.8	etween 1976-1984, use 1.;	2	
	Final (2NBS):	along 02		across OZ
2.2 Near Fault Scaling Factor		or, from NZS1170.5, cl 3.1. along	6:	across
	factor (1/N(T,D), Factor A:	#DIV/0!		#DIV/0!
2.3 Həzərd Scəling Fəctor		e from AS1170.5, Table 3.: Z1992, from NZS4203:199 scaling factor, Factor B	12	#DIV/0!
2.4 Return Period Scaling Factor	Building Imp Return Period Scaling factor I	ortance level (from above from Table 3.1, Factor C		
2.5 Dectility Scaling Factor Assessed ductil Ductility scaling factor: =1 from 1376 onwards; or =1	ity (less than max in Table 3.2) μ., if pre-1976, fromTable 3.3;	along		across
Ductii	ty Scaling Factor, Factor D:	0.00		0.00
2.6 Structural Performance Scaling Factor:	Sp:			
Structural Performan	ice Scaling Factor Factor E:	#DIV/0!		#DIV/0!
2.7 Baseline 2NBS, (NBS2)ı = (2NBS) x A x B x C x D x E	ZNBSL:	\$DIV/0!	1	EDIV/0!
Global Critical Structural Weaknesses: (refer to NZSEE IEP Table 3.4)				
3.1. Plas Irregularity, factor insignificant 1				
3.2. Vertical irregularity, Faeinsignificant				
3.3. Short columns, Factor Cinsignificant 1	Table for selection of D1 Separation	Severe 0 <sep<.005h< th=""><th>Significant .005<sep<.01h< th=""><th>Insignificant/none Sep>.01H</th></sep<.01h<></th></sep<.005h<>	Significant .005 <sep<.01h< th=""><th>Insignificant/none Sep>.01H</th></sep<.01h<>	Insignificant/none Sep>.01H
3.4. Pounding potential Pounding effect D1, from Table to right Height Difference effect D2, from Table to right	Alignment of floors within 20% of H Alignment of floors not within 20% of H	0.7	0.8 0.7	1 0.8
Therefore, Factor D: 0	Table for Selection of D2	Severe	Significant	Insignificant/none
3.5. Site Characteristics insignificant	Separation Height difference > 4 storeys		.005 <sep<.01h 0.7</sep<.01h 	Sep>.01H 1
	Height difference 2 to 4 storeys		0.9	1
	Height difference < 2 storeys	i 1	1	1
		Along	-	Across
3.6. Other factors, Factor F For 2 3 storeys, max value =2.5, otherw Rationale	for choice of F factor, if not 1	1.5		1.5
Detail Critical Structural Weaknesses: <u>(refer to DEE Procedure section 6)</u> List any:	section 6.3.1 of DEE for discussion of F fa	ctor modification for othe	er critical structura	il weaknesses
3.7. Overall Performance Achievement ratio (PAR)		0.00		0.00
4.3 PAR x (2NBS)b:	PAR x Baselline %NBS:	#DIV/0!	1	EDIA10i
				DIV/0!

17 APPENDIX B SPREADSHEET CALCULATIONS

Long Wall hard soil

W ALL GEOMETRY									
H (m)	13.80	Co	1.2	B (m)	0.58	Ve(kN)	3 5 5		
L (m)	4.65	V _E (kN)	1105	Selected	0.9	Ì	T upper lir	mit(sec)	0.439
W _D (kN)	1754	V _R (kN)	126	DF	8.8	•		. ,	
Qc(kPa)	650	wall thic		0.3		1			
srping No.	8			UPPER	BOUND				
L1 (m)	0.150	1	G =	80000	Kend	910667			
L2 (m)	0.725	İ	V =	0.4	Km id	97333			
node	хi	xi-x (m)	ki	Wi(kN)	Wixi(kNm)	$k(x i-x)^2$			
1	0.075	-2.250	136600	3 4 4	26	691538			
2	0.513	-1.813	7 0 5 6 7	1 7 8	91	231823			
3	1.238	-1.088	70567	178	220	83456			
4	1.963	-0.363	7 0 5 6 7	178	349	9273			
5	2.688	0.363	7 0 5 6 7	178	477	9273			
6	3.413	1.088	70567	178	606	83456			
7	4.138	1.813 2.250	7 0 5 6 7	1 78 3 4 4	735	231823			
8	4.575	2.250	136600 696600	1754	4078	691538 2032178			
	S S IO N B	LOCKSIZE	030000	WALLROC					
						-			
c (m)	3.00			C m B O U N D	1.0	Fy(kN)	126	Су	0.072
		0 (T))	-			T			
1	Ti 0.439	C(Ti) 0.630	Re 8.772	Te 3.852	<u>Te/Ti</u> 8.772				
2	2.146	0.212	2.946	1.294	0.603				
3	1.720	0.267	3.714	1.631	0.948				
4	1.675	0.273	3.806	1.672	0.998				
5	1.674	0.274	3.810	1.673	1.000				
6	1.673	0.274	3.810	1.673	1.000				
7	1.673	0.274	3.810	1.673	1.000				
8	1.673	0.274	3.810	1.673	1.000				
9	1.673	0.274	3.810	1.673	1.000	_			
SEISMIC	DISPLAC	EMENT		TOP WALL	DISPLAC	EMENT			
2 upperbo		190		2 upperbo	und (mm)	229			
2 lower bo	und (mm)	0		2 lowerbo	und (mm)	0			
DUCTILIT	YFACTO	D R		DYNAMIC /	AMPLIFICA	TION EFFE	СТ		
DF =	8.8		_	Avn	0.1	m in limit	1.88	max lim	2.5
TORSION	AL INCR	EASE IN DI	SPLACEM	ENT				•	
n ot includin	-	-			1				
ASSESSI	MENT OF	PERFORM	ANCE						_
2 _{k dm}	1.2	d rift upp e	rlimit(%)	2.0	ОК	d rift low e r	lim it (%)	0.0	ОК
Therefore tl	ne foundatio		0.9			walls design s		sfactory	
Vx(kN)	236			ear stress base				212	Мра
PLEASE C	PLEASE CHECK SHEAR STRESS WITHIN CAPACITY OF A CONCRETE WALL WITH REINFORCEMENT								

Long Wall medium soil

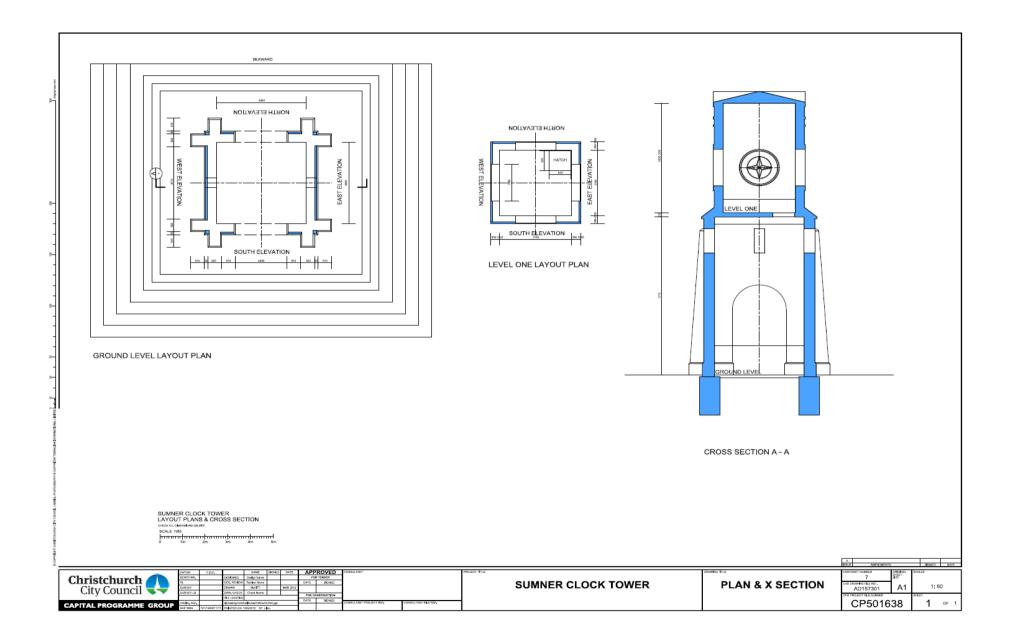
W ALL GEOMETRY									
H (m)	13.80	Co	1.2	B (m)	0.69	Ve(kN)	355		
L (m)	4.65	V _E (kN)	1105	Selected	0.9		Tupperl	im it (sec)	0.528
W _D (kN)	1754	V _R (kN)	84	DF	13.1				
Qc(kPa)	550	w all thic	kness	0.3					
srping No.	8			UPPER	BOUND				
L1 (m)	0.150		G =	60000	Kend	630462			
L2 (m)	0.725		V =	0.35	Km id	67385			
no de	хi	xi-x (m)	ki	Wi(kN)	Wixi(kNm)	$k(x i-x)^2$			
1	0.075	-2.250	94569	3 4 4	26	478757			
2	0.513	-1.813	48854	1 78	91	160493			
3	1.238	-1.088	48854	1 78	220	57777			
4	1.963	-0.363	48854	1 78	349	6420			
5	2.688	0.363	48854	1 78	477	6420			
6	3.413	1 .0 88	48854	1 78	606	57777			
7	4.138	1.813	48854	1 78	735	160493			
8	4.575	2.250	94569	3 4 4	1573	478757			
		0	482262	1754	4078	1406893			
COMPRE	SSION B	LOCK SIZE		WALL ROC	KING STR	ENGTH			
c (m)	3.54			Cm	1.0	Fy(kN)	84	Су	0.048
			UPPER	BOUND					
	Ti	C(Ti)	Re	Те	Te/Ti				
1	0.528	0 .6 20	12.894	6.806	12.894				
2	3.667	0.101	2.108	1.113	0.303				
3	2.390	0.190	3.941	2.080	0.871				
4	2.235	0.204	4.230	2.233	0.999				
5	2.234	0.204	4.232	2.234	1.000				
6	2.234	0.204	4.232	2.234	1.000				
7	2.234	0.204	4.232	2.234	1.000				
8	2.234	0.204	4.232	2.234	1.000				
9	2.234	0.204	4.232	2.234	1.000				
SEISMIC				TOP WALL					
≅ upperbo		2 5 3		≅ upper bound (mm) 303					
≅ lower bo	. , ,	0		≅ lowerbou		0			
DUCTILI	TY FACTO) R		DYNAMIC A	AMPLIFICA	TION EFFE	СТ		
DF =	12.9			Avn	0.1	m in limit	2.29	max lim	2.5
TORSION	IAL INCR	EASE IN DI	SPLACEM	ENT					
not includin	a in this spr	e ad sh ee t							
	0	PERFORM	ANCE		1				
≅ _{k dm}	1.2	d rift u pp e i	rlimit(%)	2.6	NG	drift lower	lim it (%)	0.0	ОК
Therefore t	he foundatio	on width of	0.9	is satisfactory	provided the	walls design sl	hears are sat	tisfactory	
Vx(kN)	193	corresponds to	an aprox sh	ear stress base				173	Мра
		AR STRESS V							

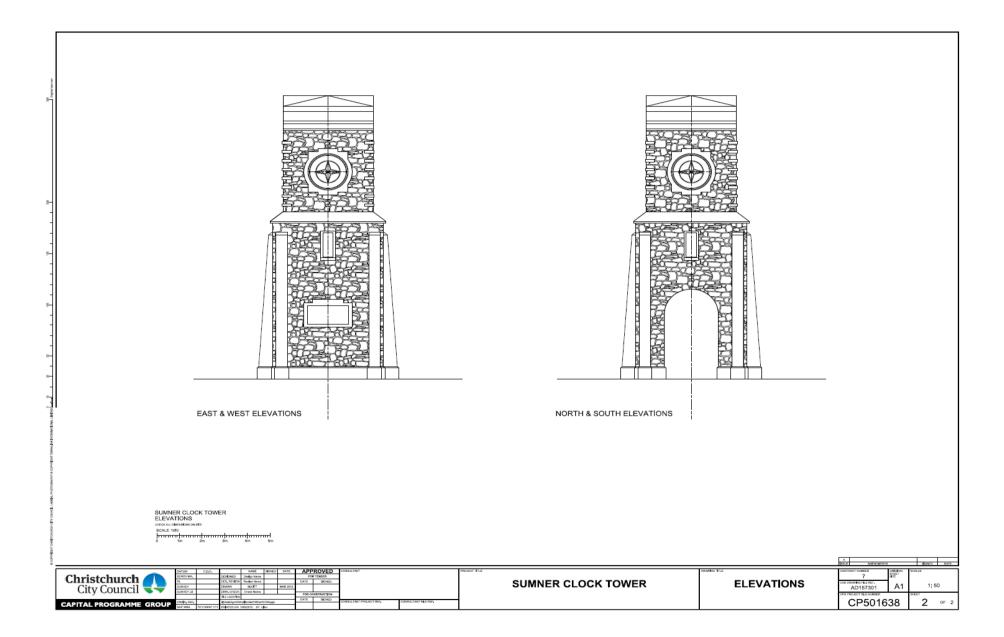
Long Wall soft soil

			W	ALLGE	OMET	RY		
H (m)	13.80	Сo	1.2	B (m)	0.84	Ve(kN)	3 5 5	
L (m)	4.65	V _E (kN)	1105	Selected	0.9	F	T upper lim it (sec	0.671
W _D (kN)	1754	V _B (kN)	24	DF	45.4			
Qc(kPa)	450	wallthi	ckness	0.3				
srping No.	8		I	UPPER	BOUND			
L1 (m)	0.150		G =	40 00 0	Kend	390286		
L2 (m)	0.725		V =	0.3	Km id	41714		
node	хi	xi-x (m)	ki	Wi(kN)	Wixi(kNm)	$k(x i-x)^2$		
1	0.075	-2.250	58543	3 4 4	26	296373		
2	0.513	-1.813	3 0 2 4 3	1 78	91	99353		
3	1.238	-1.088	3 0 2 4 3	1 78	220	3 57 67		
4	1.963	-0.363	30243	1 78	349	3974		
5	2.688	0.363	3 02 43	1 78	477	3974		
6	3.413	<u>1 .0 88</u> 1 .8 13	3 02 43 3 02 43	<u>178</u> 178	606 735	35767		
/ 8	4.138 4.575	2.250	58543	3 4 4	1573	99353 296373		
0	4.575	2.250	298543	1754	4078	870933		
	SSION B	LOCKSIZE	230343		CKING STR			
c (m)	4.33			Cm	1.0	Fy (kN)	24 C v	0.014
C (III)	4.33		IIPPER	BOUND	1.0	Г ў (KIN)	24 U y	0.014
	Ti	C(Ti)	Re	Te	Te/Ti	1		
1	0.671	0.550	39.588	26.558	39.588			
2	13.614	0.067	4.795	3.216	0.236			
3	8.415	0.067	4.795	3.216	0.382			
4	5.816	0.067	4.795	3.216	0.553			
5	4.516	0.067	4.795	3.216	0.712			
6	3.866	0.091	6.565	4.404	1.139			
7	4.135	0.079	5.724	3.840	0.929			
8	3.988	0.085	6.114	4.102	1.029			
-	4.045	0.083	5.954	3.994	0.988			
SEISMIC DISPLACEMENT								
				-	DISPLAC			
≅ upperbo	und (mm)	336		≅ upperbo	und (mm)	403		
≅ upperbo ≅ lowerbo	und (mm) und (mm)	<u>336</u> 0		≅ upperbo ≅ lowerbo	und (mm) und (mm)	403 0		
≅ upperbo ≅ lowerbo DUCTILI	und (mm) und (mm) YFACT (<u>336</u> 0		≅ upperbo ≅ lowerbo DYNAMIC	und (mm) und (mm) AMPLIFICA	403 0 TION EFFE	-	
≅ upperbo ≊ lowerbo DUCTILI DF =	und (mm) und (mm) Y FACT (39.6	336 0 D R		≅ upperbo ≅ lowerbo DYNAMIC Avn	und (mm) und (mm) AMPLIFICA	403 0	CT 4.96 max lii	m 2.5
≅ upper bo ≊ lower bo DUCTILIT DF = TORSION	und (mm) und (mm) Y FACT (39.6 IAL INCR	336 0 0 R EASE IN DI	SPLACEM	≅ upperbo ≅ lowerbo DYNAMIC Avn	und (mm) und (mm) AMPLIFICA	403 0 TION EFFE	-	m 2.5
≅ upper bo ≊ lower bo DUCTILIT DF = TORSION not includin	und (mm) und (mm) Y FACTO 39.6 IAL INCR g in this spr	336 0 DR EASE IN DI eadsheet		≅ upperbo ≅ lowerbo DYNAMIC Avn	und (mm) und (mm) AMPLIFICA	403 0 TION EFFE	-	m 2.5
≅ upper bo ≊ lower bo DUCTILIT DF = TORSION not includin	und (mm) und (mm) Y FACT (39.6 IAL INC R g in this spr MENT OF	336 0 DR EASE IN DI eadsheet PERFORM	ANCE	≅ upperbo ≊ lowerbo DYNAMIC Avn ENT	ound (mm) und (mm) A M P L IF IC A 0.1	403 0 TION EFFE m in lim it	4.96 max lii	
≝ upper bc ≘ lower bo DUCTILIT DF = TORSION not includin ASSESSI ≊kdm	und (mm) und (mm) Y FACT (39.6 IAL INC R g in this spr MENT OF 1.2	3 36 0 D R EASE IN DI eadsheet PERFORM drift uppe	ANCE	≅ upperbo ≅ lowerbo DYNAMIC Avn	und (mm) und (mm) AMPLIFICA	403 0 TION EFFE	4.96 max lii	
≝ upper bc ≊ lower bo DUCTILI DF = TORSION not includin ASSESSI	und (mm) und (mm) Y FACT (39.6 IAL INC R g in this spr MENT OF 1.2	336 0 DR EASE IN DI eadsheet PERFORM drift uppe on width of	ANCE r limit(%) 0.9	≝ upper bc ≝ lower bo DYNAMIC Avn ENT 3.5 is satisfactory	und (mm) und (mm) A M P L IF IC A 0.1 NG provided the	403 0 min limit drift lower walls design sh	4.96 max lin lim it (%) 0.0	0 <mark>0 K</mark>
	y rad (m m) und (m m) Y FACT (39.6 IAL INC R g in this spr MENT O F 1.2 ne foundatio 61	336 0 DR EASE IN DI eadsheet PERFORM drift uppe on width of corresponds tr	ANCE rlimit(%) 0.9 o an aprox sh	≝ upperbc ≝ lowerbo DYNAMIC Avn ENT 3.5 is satisfactory ear stress bas	NG NG ed on shear a	403 0 min limit drift lower walls design sh rea of WEB wa	4.96 max lin lim it (%) 0.0	0 O K

Short Wall hard soil

W ALL GEOMETRY										
H (m)	13.80	Co	1.2	B (m)	0.73	Ve(kN)	71			
L (m)	1.85	V _E (kN)	552	Selected	1.925		T upper lim it (se	ec) 0.742		
W _D (kN)	877	V _B (kN)	4 4	DF	12.6	•				
Qc(kPa)	650	wallthi	ckness	0.3		L				
srping No.	8			UPPER	BOUND					
L1 (m)	0.321		G =	80000	Kend	910667				
L2(m)	0.201		V =	0.4	Km id	97333				
node	хi	xi-x (m)	ki	Wi(kN)	Wixi (kNm)	k(xi-x) ²				
1	0.160	-0.765	292172	3 65	59	170800				
2	0.422	-0.503	19602	24	10	4969				
3	0.623	-0.302	19602	2 4	15	1789				
4	0.824	-0.101	19602	24	20	199				
5	1.026	0.101	19602	24	25	199				
6	1.227	0 .3 02	19602	24	30 35	<u>1789</u> 4969				
7	1.428	0.765	292172	3 65	617	170800				
0	1.090	0.705	701956	877	811	355513				
COMPRE	SSION B	LOCKSIZE	101000	WALL ROC	-					
c (m)	0.70			Cm	1.0	Fy (kN)	44 C	v 0.050		
C (III)	0.70	-	IIPPER	BOUND	1.0	Г у (К N)	44 0	y 0.050		
	Ti	C(Ti)	Re	Te	Te/Ti					
1	0.742	0.509	10,193	7.568	10,193					
2	4.155	0.079				-				
		0.079	1.3//	1.1/1	0.282					
23	2.663	0.170	1.577 3.402	1.171 2.526	0.282					
3	2.663	0.170	3.402	2 .5 26	0.949					
3 4 5 6	2.663 2.595 2.591 2.591	0 .1 70 0 .1 74 0 .1 74 0 .1 74	3.402 3.484 3.489 3.489	2.526 2.587 2.590 2.591	0.949 0.997 1.000 1.000					
3 4 5 6 7	2.663 2.595 2.591 2.591 2.591	0.170 0.174 0.174 0.174 0.174	3.402 3.484 3.489 3.489 3.489	2.526 2.587 2.590 2.591 2.591	0.949 0.997 1.000 1.000 1.000					
3 4 5 6 7 8	2.663 2.595 2.591 2.591 2.591 2.591 2.591	0 .1 70 0 .1 74 0 .1 74 0 .1 74 0 .1 74 0 .1 74 0 .1 74	3.402 3.484 3.489 3.489 3.489 3.489 3.489	2.526 2.587 2.590 2.591 2.591 2.591 2.591	0.949 0.997 1.000 1.000 1.000 1.000					
3 4 5 6 7 8 9	2.663 2.595 2.591 2.591 2.591 2.591 2.591 2.591	0.170 0.174 0.174 0.174 0.174 0.174 0.174	3.402 3.484 3.489 3.489 3.489	2.526 2.587 2.590 2.591 2.591 2.591 2.591 2.591	0.949 0.997 1.000 1.000 1.000 1.000 1.000					
3 4 5 6 7 8 9 SEISMIC	2.663 2.595 2.591 2.591 2.591 2.591 2.591 DISPLAC	0.170 0.174 0.174 0.174 0.174 0.174 0.174 EMENT	3.402 3.484 3.489 3.489 3.489 3.489 3.489	2.526 2.587 2.590 2.591 2.591 2.591 2.591 2.591 TOP WALL	0.949 0.997 1.000 1.000 1.000 1.000 1.000 D IS P L A C					
3 4 5 6 7 8 9 9 SEISMIC 2 upper bo	2.663 2.595 2.591 2.591 2.591 2.591 2.591 DISPLAC ound (mm)	0.170 0.174 0.174 0.174 0.174 0.174 0.174 EMENT 291	3.402 3.484 3.489 3.489 3.489 3.489 3.489	2.526 2.587 2.590 2.591 2.591 2.591 2.591 2.591 T OP W AL L E upper bo	0.949 0.997 1.000 1.000 1.000 1.000 .000 .015 P L A C und (m m)	34 9				
3 4 5 6 7 8 9 9 SEISMIC ⊆ upper bo ∑ lower bo	2.663 2.595 2.591 2.591 2.591 2.591 2.591 DISPLAC ound (mm) und (mm)	0.170 0.174 0.174 0.174 0.174 0.174 0.174 0.174 EMENT 291 0	3.402 3.484 3.489 3.489 3.489 3.489 3.489	2.526 2.587 2.590 2.591 2.591 2.591 2.591 TOP WALL <u>E upper bo</u> <u>E lower bo</u>	0.949 0.997 1.000 1.000 1.000 1.000 0 ISPLAC und (mm) und (mm)	34 9 0				
3 4 5 6 7 8 9 9 SEISMIC Ξ upper bo Ξ lower bo DUCTILI	2.663 2.595 2.591 2.591 2.591 2.591 2.591 DISPLAC ound (mm) und (mm)	0.170 0.174 0.174 0.174 0.174 0.174 0.174 0.174 EMENT 291 0	3.402 3.484 3.489 3.489 3.489 3.489 3.489	2.526 2.587 2.590 2.591 2.591 2.591 2.591 TOP WALL <u>E upper bo</u> <u>E lower bo</u>	0.949 0.997 1.000 1.000 1.000 0.00 D IS P L A C und (mm) und (mm) A M P L IF IC A	349 0 TION EFFE	ст			
3 4 5 6 7 8 9 SEISMIC ⊡ upper bo ⊡ lower bo DUCTILI DUF =	2.663 2.595 2.591 2.591 2.591 2.591 2.591 DISPLAC Dound (mm) und (mm) TY FACT (10.2	0.170 0.174 0.174 0.174 0.174 0.174 0.174 EMENT 291 0 0 R	3.402 3.484 3.489 3.489 3.489 3.489 3.489 3.489 3.489	2.526 2.587 2.590 2.591 2.591 2.591 TOP WALL <u>supper bo</u> <u>c lower bo</u> DYNAMIC A vn	0.949 0.997 1.000 1.000 1.000 0.00 D IS P L A C und (mm) und (mm) A M P L IF IC A	34 9 0	СТ 2.02 max	lim 2.5		
3 4 5 6 7 8 9 SEISMIC ⊡ upper bo ⊡ lower bo DUCTILI DUF =	2.663 2.595 2.591 2.591 2.591 2.591 2.591 DISPLAC Dound (mm) und (mm) TY FACT (10.2	0.170 0.174 0.174 0.174 0.174 0.174 0.174 0.174 EMENT 291 0	3.402 3.484 3.489 3.489 3.489 3.489 3.489 3.489 3.489	2.526 2.587 2.590 2.591 2.591 2.591 TOP WALL <u>supper bo</u> <u>c lower bo</u> DYNAMIC A vn	0.949 0.997 1.000 1.000 1.000 0.00 D IS P L A C und (mm) und (mm) A M P L IF IC A	349 0 TION EFFE		lim 2.5		
3 4 5 6 7 8 9 SEISMIC ⊡ upper bo ⊡ lower bo DUCTILI DUF =	2.663 2.595 2.591 2.591 2.591 2.591 DISPLAC Dund (mm) und (mm) YFACTO 10.2 IAL INCR	0.170 0.174 0.174 0.174 0.174 0.174 0.174 EMENT 291 0 DR EASE IN DI	3.402 3.484 3.489 3.489 3.489 3.489 3.489 3.489 3.489	2.526 2.587 2.590 2.591 2.591 2.591 TOP WALL <u>supper bo</u> <u>c lower bo</u> DYNAMIC A vn	0.949 0.997 1.000 1.000 1.000 0.00 D IS P L A C und (mm) und (mm) A M P L IF IC A	349 0 TION EFFE		lim 2.5		
3 4 5 6 7 8 9 SEISMIC ∑ upper bo ∑ lower bo DUCTII DF = TORSION not includin	2.663 2.595 2.591 2.591 2.591 2.591 DISPLAC Dund (mm) und (mm) TYFACTC 10.2 IAL INCR g in this spr	0.170 0.174 0.174 0.174 0.174 0.174 0.174 EMENT 291 0 DR EASE IN DI	3.402 3.484 3.489 3.489 3.489 3.489 3.489 3.489 3.489 3.489	2.526 2.587 2.590 2.591 2.591 2.591 TOP WALL <u>supper bo</u> <u>c lower bo</u> DYNAMIC A vn	0.949 0.997 1.000 1.000 1.000 0.00 D IS P L A C und (mm) und (mm) A M P L IF IC A	349 0 TION EFFE		lim 2.5		
3 4 5 6 7 8 9 SEISMIC Ξ upper bc Ξ lower bo DUCTILIT DF = TORSION not includin ASSESSI Ξ _{kdm}	2.663 2.595 2.591 2.591 2.591 2.591 2.591 2.591 DISPLAC 0 und (mm) TY FACTO 10.2 VAL INCR g in this spr MENT OF 1.2	0.170 0.174 0.174 0.174 0.174 0.174 0.174 EMENT 291 0 DR EASE IN DI eadsheet PERFORM drift uppe	3.402 3.484 3.489 3.489 3.489 3.489 3.489 3.489 3.489 3.489 SPLACEM	2.526 2.590 2.591 2.591 2.591 2.591 TOP WALL <u>E upper bo</u> <u>E lower bo</u> DYNAMIC Avn ENT	0.949 0.997 1.000 1.000 1.000 0.DISPLAC und (mm) AMPLIFICA 0.1	349 0 TION EFFE min limit drift lower	2.02 max	0.0 OK		
3 4 5 6 7 8 9 SEISMIC ∑upperbo ∑lowerbo DUCTII DF = TORSION not includin ASSESSI	2.663 2.595 2.591 2.591 2.591 2.591 2.591 2.591 DISPLAC 0 und (mm) TY FACTO 10.2 VAL INCR g in this spr MENT OF 1.2	0.170 0.174 0.174 0.174 0.174 0.174 EMENT 291 0 DR EASE IN DI eadsheet PERFORM drift uppe on width of	3.402 3.484 3.489 3.489 3.489 3.489 3.489 3.489 3.489 3.489 5.495 5.495	2.526 2.590 2.591 2.591 2.591 TOP WALL <u>Supperbo</u> <u>DYNAMIC</u> Avn ENT 3.0 is satisfactory	0.949 0.997 1.000 1.000 1.000 DISPLAC und (mm) AMPLIFICA 0.1	349 0 ATION EFFE min limit drift lower walls design s	2.02 max	0.0 OK		
3 4 5 6 7 8 9 SEISMIC Ξ upper bo Ξ lower bo DUCTILI DF = TORSION not includin ASSESSI Ξ _{kdm} Therefore t Vx (kN)	2.663 2.595 2.591 2.591 2.591 2.591 DISPLAC DUND (mm) UND (mm) TY FACTO 10.2 IAL INCR g in this spr MENT OF 1.2 he fo undatio 88	0.170 0.174 0.174 0.174 0.174 0.174 EMENT 291 0 DR EASE IN DI eadsheet PERFORM drift uppe on width of corresponds tu	3.402 3.484 3.489 3.489 3.489 3.489 3.489 3.489 3.489 5.499 5.499	2.526 2.587 2.590 2.591 2.591 2.591 TOP WALL E upper bo E lower bo D Y NAMIC Avn E N T 3.0 is satisfactory ear stress bas	0.949 0.997 1.000 1.000 1.000 0.DISPLAC und (mm) am PLIFICA 0.1	349 0 NTION EFFE min limit drift lower walls design s trea of WEB wi	2.02 max	0.0 OK		


Short Wall medium soil


W ALL GEOMETRY										
H (m)	13.80	Co	1.2	B (m)	0.86	Ve(kN)	71			
L (m)	1.85	V _F (kN)	552	Selected	1.925		T upperlin	nit (sec)	0.892	
$W_{\rm D}$ (kN)	877	V _B (kN)	3.9	DF	14.2	, 1				
Qc (kPa)	550	wall thi	••	0.3	14.2	L				
srping No.	8	wantin	Skile 33		BOUND					
L1 (m)	0.321		G =	60000	Kend	630462				
L2 (m)	0.201		V =	0.35	Kenid	67385				
node	xi	xi-x (m)	ki	Wi(kN)	Wixi (kNm)	k(xi-x) ²				
1	0.160	-0.765	202273	3 65	59	118246				
2	0.422	-0.503	1 35 71	24	10	3440				
3	0.623	-0.302	13571	24	15	1238				
4	0.824	-0.101	13571	24	20	138				
5	1.026	0.101	1 35 7 1	24	25	138				
6	1.227	0.302	13571	24	30	1238				
7	1.428	0.503	1 35 7 1	2 4	35	3440				
8	1.690	0.765	202273	3 65	617	118246				
		0	485969	877	811	246124				
COMPRE	SSION B	LOCK SIZE		WALL ROC	CKING STR	ENGTH				
c (m)	0.83			Cm	1.0	Fy(kN)	39	Су	0.044	
			UPPER	BOUND		_				
	Ti	C(Ti)	Re	Te	Te/Ti					
1	0.892	0.443	9.966	8.893	9.966					
2	4.893	0.067	1.499	1.337	0.273					
3	3.115	0.141	3.166	2.826	0.907	-				
4	2.970	0.152	3.412	3.045	1.025	-				
5	3.008	0.149	3.359	2.997	0.996					
6 7	3.002	0.150	3.368 3.365	3.005 3.003	1.001	-				
	3.004	0.149	3.366	3.003	1.000	-				
8	3.003	0.150	3.366	3.004	1.000					
SEISMIC			3.300							
				TOP WALL DISPLACEMENT						
E upper bo		<u>335</u> 0		E upper bound (mm)402E lower bound (mm)0						
Ξ lower bo	. ,	-				•	<u> </u>		1	
DUCTILIT		ЛК		-	-	TION EFFE	-			
DF =	10.0			Avn	0.1	m in limit	2.00	max lim	2.5	
	-	EASE IN DI	SPLACEM	ENT						
n ot includin										
	-	PERFORM	-		1					
Ξ _{kdm}	1.2	d rift u pp e	rlimit(%)	3.5	NG	drift lower	· · ·	0.0	OK	
Therefore t	ne foundatio		1.9			walls design s		sfactory		
Vx (kN) 78 corresponds to an aprox shear stress based on shear area of WEB wall of 0.8Ag 175 Mpa										
						VALL WITH RE			wpa	

Short Wall soft soil

W ALL GEOMETRY									
H (m)	13.80	Co	1.2	B (m)	1.05	Ve(kN)	71		
L (m)	1.85	V _E (kN)	552	Selected	1.925		T upper li	mit (sec)	1.134
W _D (kN)	877	V _B (kN)	3 2	D F	17.3	-			
Qc(kPa)	450	w all thic	kness	0.3		•			
srping No.	8			UPPER	BOUND				
L1 (m)	0.321		G =	40000	Kend	390286			
L2 (m)	0.201		V =	0.3	Km id	41714			
node	хi	xi-x (m)	ki	Wi(kN)	Wixi(kNm)	k (x i-x) ²			
1	0.160	-0.765	125217	3 65	59	7 32 0 0			
2	0.422	-0.503	8401	2 4	10	2129			
3	0.623	-0.302	8401	2 4	15	767			
4	0.824	-0.101	8401	2 4	20	85			
5	1.026	0.101	8401	2 4	25	85			
6	1.227	0.302	8401	24	30	767			
7	1.428	0.503	8401	2 4	35	2129			
8	1.690	0.765	125217	3 65	617	7 32 00			
		0	300838	877	811	1 5 2 3 6 3			
		LOCKSIZE		WALL ROC					
c (m)	1.01			Cm	1.0	Fy(kN)	32	Су	0.036
			UPPER						
	Ti	C(Ti)	Re	Te	Te/Ti	•			
1	1.134	0.378	10.368	11.759	10.368				
2	6.447 4.260	0.067	1.828	2.073 2.338	0.322				
4	3.299	0.126	3.461	3.925	1.190	-			
4 5	3.612	0.120	2.863	3.247	0.899				
6	3.430	0.116	3.175	3.601	1.050				
7	3.516	0.109	3.000	3.402	0.968				
8	3,459	0.113	3.112	3.529	1.020				
9	3.494	0.111	3.035	3.442	0.985				
SEISMIC	DISPLAC	EMENT		TOP WALL	DISPLAC	EMENT			
Z upper bo	und (mm)	3 3 5		Z upper bound (mm) 402					
Z lower bo	und (mm)	0		Zlowerbou	und (mm)	0			
DUCTILIT	YFACTO	D R		DYNAMIC AMPLIFICATION EFFECT					
DF =	10.4			Avn	0.1	m in limit	2.04	max lim	2.5
TORSION	AL INCR	EASE IN DI	SPLACEM	ENT					
not includin				-					
		PERFORM	ANCE						
Z _{k dm}	1.2	d rift upp e	-	3.5	NG	drift lower	lim it (%)	0.0	OK
The refore th	he foundatio	on width of	1 .9	is satisfactory	provided the	walls design s	hears are sat	isfactory	
Vx(kN)	65			ear stress base	d on shear a			147	Мра
		AR STRESS V							

APPENDIX C DRAWINGS

